Loading…

Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area

This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of time-dependent materials 2022-12, Vol.26 (4), p.923-937
Main Authors: Cuma, Yavuz Cetin, Calim, Faruk Firat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3
cites cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3
container_end_page 937
container_issue 4
container_start_page 923
container_title Mechanics of time-dependent materials
container_volume 26
creator Cuma, Yavuz Cetin
Calim, Faruk Firat
description This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.
doi_str_mv 10.1007/s11043-021-09520-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2743528244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2743528244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQHETB9fEDngKeo3lMNpmj-IYFL3oOPZMeNxInazK7sgf_3bgjePPUBV1VVFVVnXF2wRnTl5lzVkvKBKesUYJRvlfNuNKSCi3NfsHSKCoYY4fVUc5vBeiGmVn1dbMd4N13JGFexSEjiT3Z-NxFDJDH8ujXQzf6OEAIW_KawKEjLaSEgcDgyHK7wtTGEL2DQLroA8mr5IfXTD79uCQbSB7agKRLMWea8deMQEI4qQ56CBlPf-9x9XJ3-3z9QBdP94_XVwvaSd6MVLemMaAQJDgHyoFG0RjnlFZmjs4ZLdS8ZbzwXAONQCld65iuRWd473p5XJ1PvqsUP9aYR_sW16mkyFboWiphRF0XlphYu6gJe1uKvEPaWs7sz8x2mtmWme1uZsuLSE6iqTWmP-t_VN9Pj4ON</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743528244</pqid></control><display><type>article</type><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><source>Springer Link</source><creator>Cuma, Yavuz Cetin ; Calim, Faruk Firat</creator><creatorcontrib>Cuma, Yavuz Cetin ; Calim, Faruk Firat</creatorcontrib><description>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-021-09520-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Beam theory (structures) ; Characterization and Evaluation of Materials ; Classical Mechanics ; Coils ; Cross-sections ; Damping ratio ; Dynamic response ; Engineering ; Forced vibration ; Functionally gradient materials ; Matrix methods ; Polymer Sciences ; Solid Mechanics ; Springs (elastic) ; Stiffness matrix ; Timoshenko beams ; Transfer matrices ; Vibration analysis ; Viscoelasticity</subject><ispartof>Mechanics of time-dependent materials, 2022-12, Vol.26 (4), p.923-937</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</citedby><cites>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</cites><orcidid>0000-0002-7493-3386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cuma, Yavuz Cetin</creatorcontrib><creatorcontrib>Calim, Faruk Firat</creatorcontrib><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</description><subject>Algorithms</subject><subject>Beam theory (structures)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Coils</subject><subject>Cross-sections</subject><subject>Damping ratio</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Functionally gradient materials</subject><subject>Matrix methods</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Springs (elastic)</subject><subject>Stiffness matrix</subject><subject>Timoshenko beams</subject><subject>Transfer matrices</subject><subject>Vibration analysis</subject><subject>Viscoelasticity</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQHETB9fEDngKeo3lMNpmj-IYFL3oOPZMeNxInazK7sgf_3bgjePPUBV1VVFVVnXF2wRnTl5lzVkvKBKesUYJRvlfNuNKSCi3NfsHSKCoYY4fVUc5vBeiGmVn1dbMd4N13JGFexSEjiT3Z-NxFDJDH8ujXQzf6OEAIW_KawKEjLaSEgcDgyHK7wtTGEL2DQLroA8mr5IfXTD79uCQbSB7agKRLMWea8deMQEI4qQ56CBlPf-9x9XJ3-3z9QBdP94_XVwvaSd6MVLemMaAQJDgHyoFG0RjnlFZmjs4ZLdS8ZbzwXAONQCld65iuRWd473p5XJ1PvqsUP9aYR_sW16mkyFboWiphRF0XlphYu6gJe1uKvEPaWs7sz8x2mtmWme1uZsuLSE6iqTWmP-t_VN9Pj4ON</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cuma, Yavuz Cetin</creator><creator>Calim, Faruk Firat</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7493-3386</orcidid></search><sort><creationdate>20221201</creationdate><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><author>Cuma, Yavuz Cetin ; Calim, Faruk Firat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Beam theory (structures)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Coils</topic><topic>Cross-sections</topic><topic>Damping ratio</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Functionally gradient materials</topic><topic>Matrix methods</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Springs (elastic)</topic><topic>Stiffness matrix</topic><topic>Timoshenko beams</topic><topic>Transfer matrices</topic><topic>Vibration analysis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuma, Yavuz Cetin</creatorcontrib><creatorcontrib>Calim, Faruk Firat</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuma, Yavuz Cetin</au><au>Calim, Faruk Firat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>923</spage><epage>937</epage><pages>923-937</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-021-09520-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7493-3386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-2000
ispartof Mechanics of time-dependent materials, 2022-12, Vol.26 (4), p.923-937
issn 1385-2000
1573-2738
language eng
recordid cdi_proquest_journals_2743528244
source Springer Link
subjects Algorithms
Beam theory (structures)
Characterization and Evaluation of Materials
Classical Mechanics
Coils
Cross-sections
Damping ratio
Dynamic response
Engineering
Forced vibration
Functionally gradient materials
Matrix methods
Polymer Sciences
Solid Mechanics
Springs (elastic)
Stiffness matrix
Timoshenko beams
Transfer matrices
Vibration analysis
Viscoelasticity
title Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20viscoelastic%20functionally%20graded%20barrel%20and%20hyperboloidal%20coil%20springs%20with%20variable%20cross-sectional%20area&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Cuma,%20Yavuz%20Cetin&rft.date=2022-12-01&rft.volume=26&rft.issue=4&rft.spage=923&rft.epage=937&rft.pages=923-937&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-021-09520-1&rft_dat=%3Cproquest_cross%3E2743528244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2743528244&rft_id=info:pmid/&rfr_iscdi=true