Loading…
Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area
This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics...
Saved in:
Published in: | Mechanics of time-dependent materials 2022-12, Vol.26 (4), p.923-937 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3 |
container_end_page | 937 |
container_issue | 4 |
container_start_page | 923 |
container_title | Mechanics of time-dependent materials |
container_volume | 26 |
creator | Cuma, Yavuz Cetin Calim, Faruk Firat |
description | This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above. |
doi_str_mv | 10.1007/s11043-021-09520-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2743528244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2743528244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQHETB9fEDngKeo3lMNpmj-IYFL3oOPZMeNxInazK7sgf_3bgjePPUBV1VVFVVnXF2wRnTl5lzVkvKBKesUYJRvlfNuNKSCi3NfsHSKCoYY4fVUc5vBeiGmVn1dbMd4N13JGFexSEjiT3Z-NxFDJDH8ujXQzf6OEAIW_KawKEjLaSEgcDgyHK7wtTGEL2DQLroA8mr5IfXTD79uCQbSB7agKRLMWea8deMQEI4qQ56CBlPf-9x9XJ3-3z9QBdP94_XVwvaSd6MVLemMaAQJDgHyoFG0RjnlFZmjs4ZLdS8ZbzwXAONQCld65iuRWd473p5XJ1PvqsUP9aYR_sW16mkyFboWiphRF0XlphYu6gJe1uKvEPaWs7sz8x2mtmWme1uZsuLSE6iqTWmP-t_VN9Pj4ON</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743528244</pqid></control><display><type>article</type><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><source>Springer Link</source><creator>Cuma, Yavuz Cetin ; Calim, Faruk Firat</creator><creatorcontrib>Cuma, Yavuz Cetin ; Calim, Faruk Firat</creatorcontrib><description>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-021-09520-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Beam theory (structures) ; Characterization and Evaluation of Materials ; Classical Mechanics ; Coils ; Cross-sections ; Damping ratio ; Dynamic response ; Engineering ; Forced vibration ; Functionally gradient materials ; Matrix methods ; Polymer Sciences ; Solid Mechanics ; Springs (elastic) ; Stiffness matrix ; Timoshenko beams ; Transfer matrices ; Vibration analysis ; Viscoelasticity</subject><ispartof>Mechanics of time-dependent materials, 2022-12, Vol.26 (4), p.923-937</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</citedby><cites>FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</cites><orcidid>0000-0002-7493-3386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cuma, Yavuz Cetin</creatorcontrib><creatorcontrib>Calim, Faruk Firat</creatorcontrib><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</description><subject>Algorithms</subject><subject>Beam theory (structures)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Coils</subject><subject>Cross-sections</subject><subject>Damping ratio</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Functionally gradient materials</subject><subject>Matrix methods</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Springs (elastic)</subject><subject>Stiffness matrix</subject><subject>Timoshenko beams</subject><subject>Transfer matrices</subject><subject>Vibration analysis</subject><subject>Viscoelasticity</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQHETB9fEDngKeo3lMNpmj-IYFL3oOPZMeNxInazK7sgf_3bgjePPUBV1VVFVVnXF2wRnTl5lzVkvKBKesUYJRvlfNuNKSCi3NfsHSKCoYY4fVUc5vBeiGmVn1dbMd4N13JGFexSEjiT3Z-NxFDJDH8ujXQzf6OEAIW_KawKEjLaSEgcDgyHK7wtTGEL2DQLroA8mr5IfXTD79uCQbSB7agKRLMWea8deMQEI4qQ56CBlPf-9x9XJ3-3z9QBdP94_XVwvaSd6MVLemMaAQJDgHyoFG0RjnlFZmjs4ZLdS8ZbzwXAONQCld65iuRWd473p5XJ1PvqsUP9aYR_sW16mkyFboWiphRF0XlphYu6gJe1uKvEPaWs7sz8x2mtmWme1uZsuLSE6iqTWmP-t_VN9Pj4ON</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cuma, Yavuz Cetin</creator><creator>Calim, Faruk Firat</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7493-3386</orcidid></search><sort><creationdate>20221201</creationdate><title>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</title><author>Cuma, Yavuz Cetin ; Calim, Faruk Firat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Beam theory (structures)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Coils</topic><topic>Cross-sections</topic><topic>Damping ratio</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Functionally gradient materials</topic><topic>Matrix methods</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Springs (elastic)</topic><topic>Stiffness matrix</topic><topic>Timoshenko beams</topic><topic>Transfer matrices</topic><topic>Vibration analysis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuma, Yavuz Cetin</creatorcontrib><creatorcontrib>Calim, Faruk Firat</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuma, Yavuz Cetin</au><au>Calim, Faruk Firat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>923</spage><epage>937</epage><pages>923-937</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>This paper investigates the dynamic response of viscoelastic axially functionally graded (AFG) barrel and hyperboloidal coil springs with variable cross-sectional area. Equations governing the dynamic behaviour of spatial rods are obtained via Timoshenko beam theory. The viscoelastic characteristics of the material are described by Kelvin’s model. The transfer matrix method and stiffness matrix methods are used in combination in the numerical solution of the problem. Stiffness matrices are determined by the transfer matrix method (TMM). Solutions are obtained in the Laplace domain; the results are transformed into the time domain by Durbin’s inverse Laplace transform algorithm. A benchmark solution for verifying non-cylindrical geometry is successfully integrated into the damped forced vibration analysis. A parametric study is conducted in which cylinder radius ratio, damping ratio, material gradient and cross-sectional area are varied for both helical rod geometries mentioned above.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-021-09520-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7493-3386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2000 |
ispartof | Mechanics of time-dependent materials, 2022-12, Vol.26 (4), p.923-937 |
issn | 1385-2000 1573-2738 |
language | eng |
recordid | cdi_proquest_journals_2743528244 |
source | Springer Link |
subjects | Algorithms Beam theory (structures) Characterization and Evaluation of Materials Classical Mechanics Coils Cross-sections Damping ratio Dynamic response Engineering Forced vibration Functionally gradient materials Matrix methods Polymer Sciences Solid Mechanics Springs (elastic) Stiffness matrix Timoshenko beams Transfer matrices Vibration analysis Viscoelasticity |
title | Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20viscoelastic%20functionally%20graded%20barrel%20and%20hyperboloidal%20coil%20springs%20with%20variable%20cross-sectional%20area&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Cuma,%20Yavuz%20Cetin&rft.date=2022-12-01&rft.volume=26&rft.issue=4&rft.spage=923&rft.epage=937&rft.pages=923-937&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-021-09520-1&rft_dat=%3Cproquest_cross%3E2743528244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7b898a5ea3adda5da7e298dd57586edd87256b017b8d9a92e33dbd0742c81fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2743528244&rft_id=info:pmid/&rfr_iscdi=true |