Loading…
Giant and Robust Anomalous Nernst Effect in a Polycrystalline Topological Ferromagnet at Room Temperature
Recent discoveries of the topological magnets have opened a new path for developing a much simpler thermoelectric conversion module using the anomalous Nernst effect (ANE). To accelerate such innovation, it is essential to design materials suitable for industrial processes, and thus a high‐ANE polyc...
Saved in:
Published in: | Advanced functional materials 2022-12, Vol.32 (49), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent discoveries of the topological magnets have opened a new path for developing a much simpler thermoelectric conversion module using the anomalous Nernst effect (ANE). To accelerate such innovation, it is essential to design materials suitable for industrial processes, and thus a high‐ANE polycrystalline material has been highly desired. Recently, the giant room‐temperature ANE has been reported in single crystals of the topological ferromagnet Fe3Ga. Owning to its cubic structure, the anomalous Hall effect and ANE are isotropic. These properties potentially allow to employ a polycrystalline form of the material to design an ANE‐based thermopile. Here, a giant and robust room‐temperature ANE in the polycrystalline FexGa4−x (2.96 |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202206519 |