Loading…

Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation

Both ion permeability and selectivity of membranes are crucial for nanofluidic behavior. However, it remains a long‐standing challenge for 2D materials to balance these two factors for osmotic energy harvesting. Herein, the MXene/metal–organic framework (MOF) hybrid membranes are reported to realize...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-12, Vol.32 (49), p.n/a
Main Authors: Zhou, Jiale, Hao, Junran, Wu, Rong, Su, Liying, Wang, Jie, Qiu, Ming, Bao, Bin, Ning, Chengyun, Teng, Chao, Zhou, Yahong, Jiang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3
cites cdi_FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3
container_end_page n/a
container_issue 49
container_start_page
container_title Advanced functional materials
container_volume 32
creator Zhou, Jiale
Hao, Junran
Wu, Rong
Su, Liying
Wang, Jie
Qiu, Ming
Bao, Bin
Ning, Chengyun
Teng, Chao
Zhou, Yahong
Jiang, Lei
description Both ion permeability and selectivity of membranes are crucial for nanofluidic behavior. However, it remains a long‐standing challenge for 2D materials to balance these two factors for osmotic energy harvesting. Herein, the MXene/metal–organic framework (MOF) hybrid membranes are reported to realize efficient ion‐permselective nanofluidic system, leading to high‐performance osmotic power generator. In the system, zeolitic imidazolate framework‐8 (ZIF‐8) is deposited onto the MXene surface and intercalated between the MXene nanosheets by electropolymerization approach. The angstrom‐sized windows of ZIF‐8 layer act as ion selectivity filters, endowing the membrane with high cation selectivity by size effect. The intercalation of ZIF‐8 crystals, reduces the interspacing of MXene, therefore, not only enhancing the ion permeability by shortening the ion transport pathway through the membrane, but also further improving the selectivity by increasing the overlap effect of electric‐double layer. The maximum power density reaches up to 48.05 W m−2 under 500‐fold salinity gradient with a high permeability (1263.3 A m−2), and a high selectivity of 0.906 at 50‐fold is obtained. This study provides a facile method to fabricate nanofluidic 2D membranes with both high ion permeability and selectivity for water nexus energy conversion. Ti3C2Tx MXene/ZIF‐8 hybrid membrane is fabricated by electropolymerization strategy to efficiently harvest osmotic energy. The maximum power density reaches up to 48.05 W m−2 at 500‐fold concentration gradient. The ZIF‐8 layer with angstrom‐scale ion channels endows the membrane with high selectivity (0.906) and further improves the ion permeability (1263.3 A m−2) by reducing the interlayer spacing of MXene layer.
doi_str_mv 10.1002/adfm.202209767
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2744608578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2744608578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRS0EEiHQUq9E7WQffpYh5CXFhAKkdKv1ejZsZK_D2gZMxSfwjXwJjoJCSTVT3HNndBznmuABwZgORaaKAcWU4jgMwhOnRwISuAzT6PS4k_W5c1FVW4xJGDKv5xSJeNeF_tBmgxalQQ9giwpykLV-1XWLtEHJGgwMk9UU3QtTqrzRmZYogSK1wkCFVGnRXG-evz-_JkppqcHU6DZvAE0M2E2LZh1vRa1Lc-mcKZFXcPU7-87TdPI4nrvL1WwxHi1dybq_XMaUCLKA-UQyj9CQpLHvR2maMYkzgJhJQZQCnwWKRp6IcKogZVJlIVM-DgTrOzeH3p0tXxqoar4tG2u6k5yGnhfgyA-jLjU4pKQtq8qC4jurC2FbTjDfK-V7pfyotAPiA_Cmc2j_SfPR3TT5Y38AYKl83A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744608578</pqid></control><display><type>article</type><title>Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhou, Jiale ; Hao, Junran ; Wu, Rong ; Su, Liying ; Wang, Jie ; Qiu, Ming ; Bao, Bin ; Ning, Chengyun ; Teng, Chao ; Zhou, Yahong ; Jiang, Lei</creator><creatorcontrib>Zhou, Jiale ; Hao, Junran ; Wu, Rong ; Su, Liying ; Wang, Jie ; Qiu, Ming ; Bao, Bin ; Ning, Chengyun ; Teng, Chao ; Zhou, Yahong ; Jiang, Lei</creatorcontrib><description>Both ion permeability and selectivity of membranes are crucial for nanofluidic behavior. However, it remains a long‐standing challenge for 2D materials to balance these two factors for osmotic energy harvesting. Herein, the MXene/metal–organic framework (MOF) hybrid membranes are reported to realize efficient ion‐permselective nanofluidic system, leading to high‐performance osmotic power generator. In the system, zeolitic imidazolate framework‐8 (ZIF‐8) is deposited onto the MXene surface and intercalated between the MXene nanosheets by electropolymerization approach. The angstrom‐sized windows of ZIF‐8 layer act as ion selectivity filters, endowing the membrane with high cation selectivity by size effect. The intercalation of ZIF‐8 crystals, reduces the interspacing of MXene, therefore, not only enhancing the ion permeability by shortening the ion transport pathway through the membrane, but also further improving the selectivity by increasing the overlap effect of electric‐double layer. The maximum power density reaches up to 48.05 W m−2 under 500‐fold salinity gradient with a high permeability (1263.3 A m−2), and a high selectivity of 0.906 at 50‐fold is obtained. This study provides a facile method to fabricate nanofluidic 2D membranes with both high ion permeability and selectivity for water nexus energy conversion. Ti3C2Tx MXene/ZIF‐8 hybrid membrane is fabricated by electropolymerization strategy to efficiently harvest osmotic energy. The maximum power density reaches up to 48.05 W m−2 at 500‐fold concentration gradient. The ZIF‐8 layer with angstrom‐scale ion channels endows the membrane with high selectivity (0.906) and further improves the ion permeability (1263.3 A m−2) by reducing the interlayer spacing of MXene layer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209767</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D membranes ; Electric filters ; electrochemical polymerization ; Energy conversion ; Energy harvesting ; Fluidics ; Ion transport ; Materials science ; maximizing ion‐permselectivities ; Maximum power density ; Membranes ; Metal-organic frameworks ; MXenes ; Nanofluids ; osmotic energy conversions ; Permeability ; Polymerization ; Selectivity ; Size effects ; Two dimensional materials ; Zeolites</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (49), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3</citedby><cites>FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3</cites><orcidid>0000-0002-6430-6303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Jiale</creatorcontrib><creatorcontrib>Hao, Junran</creatorcontrib><creatorcontrib>Wu, Rong</creatorcontrib><creatorcontrib>Su, Liying</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Qiu, Ming</creatorcontrib><creatorcontrib>Bao, Bin</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><creatorcontrib>Teng, Chao</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><title>Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation</title><title>Advanced functional materials</title><description>Both ion permeability and selectivity of membranes are crucial for nanofluidic behavior. However, it remains a long‐standing challenge for 2D materials to balance these two factors for osmotic energy harvesting. Herein, the MXene/metal–organic framework (MOF) hybrid membranes are reported to realize efficient ion‐permselective nanofluidic system, leading to high‐performance osmotic power generator. In the system, zeolitic imidazolate framework‐8 (ZIF‐8) is deposited onto the MXene surface and intercalated between the MXene nanosheets by electropolymerization approach. The angstrom‐sized windows of ZIF‐8 layer act as ion selectivity filters, endowing the membrane with high cation selectivity by size effect. The intercalation of ZIF‐8 crystals, reduces the interspacing of MXene, therefore, not only enhancing the ion permeability by shortening the ion transport pathway through the membrane, but also further improving the selectivity by increasing the overlap effect of electric‐double layer. The maximum power density reaches up to 48.05 W m−2 under 500‐fold salinity gradient with a high permeability (1263.3 A m−2), and a high selectivity of 0.906 at 50‐fold is obtained. This study provides a facile method to fabricate nanofluidic 2D membranes with both high ion permeability and selectivity for water nexus energy conversion. Ti3C2Tx MXene/ZIF‐8 hybrid membrane is fabricated by electropolymerization strategy to efficiently harvest osmotic energy. The maximum power density reaches up to 48.05 W m−2 at 500‐fold concentration gradient. The ZIF‐8 layer with angstrom‐scale ion channels endows the membrane with high selectivity (0.906) and further improves the ion permeability (1263.3 A m−2) by reducing the interlayer spacing of MXene layer.</description><subject>2D membranes</subject><subject>Electric filters</subject><subject>electrochemical polymerization</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>Ion transport</subject><subject>Materials science</subject><subject>maximizing ion‐permselectivities</subject><subject>Maximum power density</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>MXenes</subject><subject>Nanofluids</subject><subject>osmotic energy conversions</subject><subject>Permeability</subject><subject>Polymerization</subject><subject>Selectivity</subject><subject>Size effects</subject><subject>Two dimensional materials</subject><subject>Zeolites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRS0EEiHQUq9E7WQffpYh5CXFhAKkdKv1ejZsZK_D2gZMxSfwjXwJjoJCSTVT3HNndBznmuABwZgORaaKAcWU4jgMwhOnRwISuAzT6PS4k_W5c1FVW4xJGDKv5xSJeNeF_tBmgxalQQ9giwpykLV-1XWLtEHJGgwMk9UU3QtTqrzRmZYogSK1wkCFVGnRXG-evz-_JkppqcHU6DZvAE0M2E2LZh1vRa1Lc-mcKZFXcPU7-87TdPI4nrvL1WwxHi1dybq_XMaUCLKA-UQyj9CQpLHvR2maMYkzgJhJQZQCnwWKRp6IcKogZVJlIVM-DgTrOzeH3p0tXxqoar4tG2u6k5yGnhfgyA-jLjU4pKQtq8qC4jurC2FbTjDfK-V7pfyotAPiA_Cmc2j_SfPR3TT5Y38AYKl83A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhou, Jiale</creator><creator>Hao, Junran</creator><creator>Wu, Rong</creator><creator>Su, Liying</creator><creator>Wang, Jie</creator><creator>Qiu, Ming</creator><creator>Bao, Bin</creator><creator>Ning, Chengyun</creator><creator>Teng, Chao</creator><creator>Zhou, Yahong</creator><creator>Jiang, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6430-6303</orcidid></search><sort><creationdate>20221201</creationdate><title>Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation</title><author>Zhou, Jiale ; Hao, Junran ; Wu, Rong ; Su, Liying ; Wang, Jie ; Qiu, Ming ; Bao, Bin ; Ning, Chengyun ; Teng, Chao ; Zhou, Yahong ; Jiang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D membranes</topic><topic>Electric filters</topic><topic>electrochemical polymerization</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>Ion transport</topic><topic>Materials science</topic><topic>maximizing ion‐permselectivities</topic><topic>Maximum power density</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>MXenes</topic><topic>Nanofluids</topic><topic>osmotic energy conversions</topic><topic>Permeability</topic><topic>Polymerization</topic><topic>Selectivity</topic><topic>Size effects</topic><topic>Two dimensional materials</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jiale</creatorcontrib><creatorcontrib>Hao, Junran</creatorcontrib><creatorcontrib>Wu, Rong</creatorcontrib><creatorcontrib>Su, Liying</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Qiu, Ming</creatorcontrib><creatorcontrib>Bao, Bin</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><creatorcontrib>Teng, Chao</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jiale</au><au>Hao, Junran</au><au>Wu, Rong</au><au>Su, Liying</au><au>Wang, Jie</au><au>Qiu, Ming</au><au>Bao, Bin</au><au>Ning, Chengyun</au><au>Teng, Chao</au><au>Zhou, Yahong</au><au>Jiang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Both ion permeability and selectivity of membranes are crucial for nanofluidic behavior. However, it remains a long‐standing challenge for 2D materials to balance these two factors for osmotic energy harvesting. Herein, the MXene/metal–organic framework (MOF) hybrid membranes are reported to realize efficient ion‐permselective nanofluidic system, leading to high‐performance osmotic power generator. In the system, zeolitic imidazolate framework‐8 (ZIF‐8) is deposited onto the MXene surface and intercalated between the MXene nanosheets by electropolymerization approach. The angstrom‐sized windows of ZIF‐8 layer act as ion selectivity filters, endowing the membrane with high cation selectivity by size effect. The intercalation of ZIF‐8 crystals, reduces the interspacing of MXene, therefore, not only enhancing the ion permeability by shortening the ion transport pathway through the membrane, but also further improving the selectivity by increasing the overlap effect of electric‐double layer. The maximum power density reaches up to 48.05 W m−2 under 500‐fold salinity gradient with a high permeability (1263.3 A m−2), and a high selectivity of 0.906 at 50‐fold is obtained. This study provides a facile method to fabricate nanofluidic 2D membranes with both high ion permeability and selectivity for water nexus energy conversion. Ti3C2Tx MXene/ZIF‐8 hybrid membrane is fabricated by electropolymerization strategy to efficiently harvest osmotic energy. The maximum power density reaches up to 48.05 W m−2 at 500‐fold concentration gradient. The ZIF‐8 layer with angstrom‐scale ion channels endows the membrane with high selectivity (0.906) and further improves the ion permeability (1263.3 A m−2) by reducing the interlayer spacing of MXene layer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209767</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6430-6303</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (49), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2744608578
source Wiley-Blackwell Read & Publish Collection
subjects 2D membranes
Electric filters
electrochemical polymerization
Energy conversion
Energy harvesting
Fluidics
Ion transport
Materials science
maximizing ion‐permselectivities
Maximum power density
Membranes
Metal-organic frameworks
MXenes
Nanofluids
osmotic energy conversions
Permeability
Polymerization
Selectivity
Size effects
Two dimensional materials
Zeolites
title Maximizing Ion Permselectivity in MXene/MOF Nanofluidic Membranes for High‐Efficient Blue Energy Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Ion%20Permselectivity%20in%20MXene/MOF%20Nanofluidic%20Membranes%20for%20High%E2%80%90Efficient%20Blue%20Energy%20Generation&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Jiale&rft.date=2022-12-01&rft.volume=32&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209767&rft_dat=%3Cproquest_cross%3E2744608578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-33fa6d6351c341271b9558bbd3c0dee93ca1ffe536f284a80bfeb3cfd73f506a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2744608578&rft_id=info:pmid/&rfr_iscdi=true