Loading…
Segmentation of Multi-Band Images Using Watershed Arcs
Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted gra...
Saved in:
Published in: | IEEE signal processing letters 2022, Vol.29, p.2407-2411 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93 |
container_end_page | 2411 |
container_issue | |
container_start_page | 2407 |
container_title | IEEE signal processing letters |
container_volume | 29 |
creator | Soor, Sampriti Sagar, B. S. Daya |
description | Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation. |
doi_str_mv | 10.1109/LSP.2022.3223625 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2745129373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9956768</ieee_id><sourcerecordid>2745129373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZnd1k91iLH4WIQi0el81mUlPapO6mB_-9KS2e5h143hl4GLvlMOEczEOx-JgIEGKCQmAm1BkbcaV0Oiz8fMiQQ2oM6Et2FeMaADTXasSyBa221Paub7o26erkbb_pm_TRtVUy37oVxWQZm3aVfLmeQvymKpkGH6_ZRe02kW5Oc8yWz0-fs9e0eH-Zz6ZF6hGxTyvFlc5KLJWQntBLj77myCWgpAq4z3Pwua491-RE6bxTsgZZVhzQmNLgmN0f7-5C97On2Nt1tw_t8NKKXCouDOY4UHCkfOhiDFTbXWi2LvxaDvZgxw527MGOPdkZKnfHSkNE_7gxKsszjX-ad17A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745129373</pqid></control><display><type>article</type><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Soor, Sampriti ; Sagar, B. S. Daya</creator><creatorcontrib>Soor, Sampriti ; Sagar, B. S. Daya</creatorcontrib><description>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2022.3223625</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Costs ; Image edge detection ; Image segmentation ; Merging ; Object detection ; Pattern recognition ; region merging ; Target recognition ; watershed arcs ; Watershed transformation</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.2407-2411</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</citedby><cites>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</cites><orcidid>0000-0002-6140-8742 ; 0000-0003-0861-9329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9956768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Soor, Sampriti</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</description><subject>Costs</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>region merging</subject><subject>Target recognition</subject><subject>watershed arcs</subject><subject>Watershed transformation</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZnd1k91iLH4WIQi0el81mUlPapO6mB_-9KS2e5h143hl4GLvlMOEczEOx-JgIEGKCQmAm1BkbcaV0Oiz8fMiQQ2oM6Et2FeMaADTXasSyBa221Paub7o26erkbb_pm_TRtVUy37oVxWQZm3aVfLmeQvymKpkGH6_ZRe02kW5Oc8yWz0-fs9e0eH-Zz6ZF6hGxTyvFlc5KLJWQntBLj77myCWgpAq4z3Pwua491-RE6bxTsgZZVhzQmNLgmN0f7-5C97On2Nt1tw_t8NKKXCouDOY4UHCkfOhiDFTbXWi2LvxaDvZgxw527MGOPdkZKnfHSkNE_7gxKsszjX-ad17A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Soor, Sampriti</creator><creator>Sagar, B. S. Daya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6140-8742</orcidid><orcidid>https://orcid.org/0000-0003-0861-9329</orcidid></search><sort><creationdate>2022</creationdate><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><author>Soor, Sampriti ; Sagar, B. S. Daya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Costs</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>region merging</topic><topic>Target recognition</topic><topic>watershed arcs</topic><topic>Watershed transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soor, Sampriti</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soor, Sampriti</au><au>Sagar, B. S. Daya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Multi-Band Images Using Watershed Arcs</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>2407</spage><epage>2411</epage><pages>2407-2411</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2022.3223625</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6140-8742</orcidid><orcidid>https://orcid.org/0000-0003-0861-9329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2022, Vol.29, p.2407-2411 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2745129373 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Costs Image edge detection Image segmentation Merging Object detection Pattern recognition region merging Target recognition watershed arcs Watershed transformation |
title | Segmentation of Multi-Band Images Using Watershed Arcs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Multi-Band%20Images%20Using%20Watershed%20Arcs&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Soor,%20Sampriti&rft.date=2022&rft.volume=29&rft.spage=2407&rft.epage=2411&rft.pages=2407-2411&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2022.3223625&rft_dat=%3Cproquest_ieee_%3E2745129373%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745129373&rft_id=info:pmid/&rft_ieee_id=9956768&rfr_iscdi=true |