Loading…

Segmentation of Multi-Band Images Using Watershed Arcs

Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted gra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2022, Vol.29, p.2407-2411
Main Authors: Soor, Sampriti, Sagar, B. S. Daya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93
cites cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93
container_end_page 2411
container_issue
container_start_page 2407
container_title IEEE signal processing letters
container_volume 29
creator Soor, Sampriti
Sagar, B. S. Daya
description Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.
doi_str_mv 10.1109/LSP.2022.3223625
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2745129373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9956768</ieee_id><sourcerecordid>2745129373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZnd1k91iLH4WIQi0el81mUlPapO6mB_-9KS2e5h143hl4GLvlMOEczEOx-JgIEGKCQmAm1BkbcaV0Oiz8fMiQQ2oM6Et2FeMaADTXasSyBa221Paub7o26erkbb_pm_TRtVUy37oVxWQZm3aVfLmeQvymKpkGH6_ZRe02kW5Oc8yWz0-fs9e0eH-Zz6ZF6hGxTyvFlc5KLJWQntBLj77myCWgpAq4z3Pwua491-RE6bxTsgZZVhzQmNLgmN0f7-5C97On2Nt1tw_t8NKKXCouDOY4UHCkfOhiDFTbXWi2LvxaDvZgxw527MGOPdkZKnfHSkNE_7gxKsszjX-ad17A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745129373</pqid></control><display><type>article</type><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Soor, Sampriti ; Sagar, B. S. Daya</creator><creatorcontrib>Soor, Sampriti ; Sagar, B. S. Daya</creatorcontrib><description>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2022.3223625</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Costs ; Image edge detection ; Image segmentation ; Merging ; Object detection ; Pattern recognition ; region merging ; Target recognition ; watershed arcs ; Watershed transformation</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.2407-2411</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</citedby><cites>FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</cites><orcidid>0000-0002-6140-8742 ; 0000-0003-0861-9329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9956768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Soor, Sampriti</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</description><subject>Costs</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>region merging</subject><subject>Target recognition</subject><subject>watershed arcs</subject><subject>Watershed transformation</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZnd1k91iLH4WIQi0el81mUlPapO6mB_-9KS2e5h143hl4GLvlMOEczEOx-JgIEGKCQmAm1BkbcaV0Oiz8fMiQQ2oM6Et2FeMaADTXasSyBa221Paub7o26erkbb_pm_TRtVUy37oVxWQZm3aVfLmeQvymKpkGH6_ZRe02kW5Oc8yWz0-fs9e0eH-Zz6ZF6hGxTyvFlc5KLJWQntBLj77myCWgpAq4z3Pwua491-RE6bxTsgZZVhzQmNLgmN0f7-5C97On2Nt1tw_t8NKKXCouDOY4UHCkfOhiDFTbXWi2LvxaDvZgxw527MGOPdkZKnfHSkNE_7gxKsszjX-ad17A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Soor, Sampriti</creator><creator>Sagar, B. S. Daya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6140-8742</orcidid><orcidid>https://orcid.org/0000-0003-0861-9329</orcidid></search><sort><creationdate>2022</creationdate><title>Segmentation of Multi-Band Images Using Watershed Arcs</title><author>Soor, Sampriti ; Sagar, B. S. Daya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Costs</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>region merging</topic><topic>Target recognition</topic><topic>watershed arcs</topic><topic>Watershed transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soor, Sampriti</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soor, Sampriti</au><au>Sagar, B. S. Daya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Multi-Band Images Using Watershed Arcs</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>2407</spage><epage>2411</epage><pages>2407-2411</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Watershed Arcs Removal for node-weighted graphs method addressed the over-segmentation problem of classical watershed transformation, in a significantly shorter run-time. In this study, a variation of Watershed Arcs Removal is proposed that generates hierarchical partitioning in an edge-weighted graph. In the proposed method, regions are grown from the nodes having high local similarity to find the initial arcs, and neighbouring regions are merged by gradually removing arcs with low local dissimilarity. The arcs to be removed in a level are selected solely from the arc-graph constructed from the existing arcs in the previous level, weighted by their local dissimilarity. In contrast to the node-weighted variation, a strategy is employed here to preserve the critical arcs. Although the proposed method can be effectively applied to any multi-band image by transforming it into an edge-weighted graph, in this study we evaluated its performance particularly in RGB image segmentation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2022.3223625</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6140-8742</orcidid><orcidid>https://orcid.org/0000-0003-0861-9329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2022, Vol.29, p.2407-2411
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2745129373
source IEEE Electronic Library (IEL) Journals
subjects Costs
Image edge detection
Image segmentation
Merging
Object detection
Pattern recognition
region merging
Target recognition
watershed arcs
Watershed transformation
title Segmentation of Multi-Band Images Using Watershed Arcs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Multi-Band%20Images%20Using%20Watershed%20Arcs&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Soor,%20Sampriti&rft.date=2022&rft.volume=29&rft.spage=2407&rft.epage=2411&rft.pages=2407-2411&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2022.3223625&rft_dat=%3Cproquest_ieee_%3E2745129373%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d51586b3b524ce3c4c3cf1314034ed01c770c78fc18ea2baca54f04bd10399b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745129373&rft_id=info:pmid/&rft_ieee_id=9956768&rfr_iscdi=true