Loading…

Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel

In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2022-12, Vol.37 (23), p.4153-4168
Main Authors: Wei, Limin, Zhou, Fei, Wang, Shuo, Hao, Weixun, Liu, Yong, Zhu, Jingchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33
cites cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33
container_end_page 4168
container_issue 23
container_start_page 4153
container_title Journal of materials research
container_volume 37
creator Wei, Limin
Zhou, Fei
Wang, Shuo
Hao, Weixun
Liu, Yong
Zhu, Jingchuan
description In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results. Graphical abstract
doi_str_mv 10.1557/s43578-022-00780-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2745387223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745387223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9Fkkpj0KIv_YMWLnkOaTpcu3XZN0sN-e-NW8OZphsfvvRkeIdeC3wqtzV1SUhvLOADj3FjO4IQsgCvFtIT7U7Lg1ioGlVDn5CKlLedCc6MWZPs29him3kfaHAa_60KiqdsVIXfjwGqfsKER9xETDvko0rGl3ZAxbqIfjs42-pCniHQfx4ApYSoA9VPKOHS5C7Qs2F-Ss9b3Ca9-55J8Pj1-rF7Y-v35dfWwZkGKKrMKIUBjFRhphBbS6CC9bYKRdWsqAbWUPICCqoZGq7oRENArbxCsbESQcklu5tzyzdeEKbvtOMWhnHRglJbWAPxQMFMhjilFbN0-djsfD05w99Opmzt1pVN37NRBMcnZlAo8bDD-Rf_j-gYYsXwN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745387223</pqid></control><display><type>article</type><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><source>Springer Nature</source><creator>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</creator><creatorcontrib>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</creatorcontrib><description>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00780-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Austenitic stainless steels ; Biomaterials ; Chemistry and Materials Science ; Crack propagation ; Criteria ; Dislocation density ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; Inorganic Chemistry ; Intergranular fracture ; Materials Engineering ; Materials research ; Materials Science ; Molecular dynamics ; Nanotechnology ; Nucleation ; Plastic deformation ; Propagation ; Simulation</subject><ispartof>Journal of materials research, 2022-12, Vol.37 (23), p.4153-4168</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</citedby><cites>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Limin</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hao, Weixun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Jingchuan</creatorcontrib><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Austenitic stainless steels</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Criteria</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>Inorganic Chemistry</subject><subject>Intergranular fracture</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Propagation</subject><subject>Simulation</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9Fkkpj0KIv_YMWLnkOaTpcu3XZN0sN-e-NW8OZphsfvvRkeIdeC3wqtzV1SUhvLOADj3FjO4IQsgCvFtIT7U7Lg1ioGlVDn5CKlLedCc6MWZPs29him3kfaHAa_60KiqdsVIXfjwGqfsKER9xETDvko0rGl3ZAxbqIfjs42-pCniHQfx4ApYSoA9VPKOHS5C7Qs2F-Ss9b3Ca9-55J8Pj1-rF7Y-v35dfWwZkGKKrMKIUBjFRhphBbS6CC9bYKRdWsqAbWUPICCqoZGq7oRENArbxCsbESQcklu5tzyzdeEKbvtOMWhnHRglJbWAPxQMFMhjilFbN0-djsfD05w99Opmzt1pVN37NRBMcnZlAo8bDD-Rf_j-gYYsXwN</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Wei, Limin</creator><creator>Zhou, Fei</creator><creator>Wang, Shuo</creator><creator>Hao, Weixun</creator><creator>Liu, Yong</creator><creator>Zhu, Jingchuan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221214</creationdate><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><author>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Austenitic stainless steels</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Criteria</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>Inorganic Chemistry</topic><topic>Intergranular fracture</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Limin</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hao, Weixun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Jingchuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Limin</au><au>Zhou, Fei</au><au>Wang, Shuo</au><au>Hao, Weixun</au><au>Liu, Yong</au><au>Zhu, Jingchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-12-14</date><risdate>2022</risdate><volume>37</volume><issue>23</issue><spage>4153</spage><epage>4168</epage><pages>4153-4168</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00780-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-12, Vol.37 (23), p.4153-4168
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2745387223
source Springer Nature
subjects Applied and Technical Physics
Austenitic stainless steels
Biomaterials
Chemistry and Materials Science
Crack propagation
Criteria
Dislocation density
Ductile fracture
Ductile-brittle transition
Grain boundaries
Inorganic Chemistry
Intergranular fracture
Materials Engineering
Materials research
Materials Science
Molecular dynamics
Nanotechnology
Nucleation
Plastic deformation
Propagation
Simulation
title Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation-based%20representation%20of%20intergranular%20fracture%20processes%20in%20austenitic%20steel&rft.jtitle=Journal%20of%20materials%20research&rft.au=Wei,%20Limin&rft.date=2022-12-14&rft.volume=37&rft.issue=23&rft.spage=4153&rft.epage=4168&rft.pages=4153-4168&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00780-2&rft_dat=%3Cproquest_cross%3E2745387223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745387223&rft_id=info:pmid/&rfr_iscdi=true