Loading…
Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel
In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation de...
Saved in:
Published in: | Journal of materials research 2022-12, Vol.37 (23), p.4153-4168 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33 |
container_end_page | 4168 |
container_issue | 23 |
container_start_page | 4153 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Wei, Limin Zhou, Fei Wang, Shuo Hao, Weixun Liu, Yong Zhu, Jingchuan |
description | In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00780-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2745387223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745387223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9Fkkpj0KIv_YMWLnkOaTpcu3XZN0sN-e-NW8OZphsfvvRkeIdeC3wqtzV1SUhvLOADj3FjO4IQsgCvFtIT7U7Lg1ioGlVDn5CKlLedCc6MWZPs29him3kfaHAa_60KiqdsVIXfjwGqfsKER9xETDvko0rGl3ZAxbqIfjs42-pCniHQfx4ApYSoA9VPKOHS5C7Qs2F-Ss9b3Ca9-55J8Pj1-rF7Y-v35dfWwZkGKKrMKIUBjFRhphBbS6CC9bYKRdWsqAbWUPICCqoZGq7oRENArbxCsbESQcklu5tzyzdeEKbvtOMWhnHRglJbWAPxQMFMhjilFbN0-djsfD05w99Opmzt1pVN37NRBMcnZlAo8bDD-Rf_j-gYYsXwN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745387223</pqid></control><display><type>article</type><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><source>Springer Nature</source><creator>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</creator><creatorcontrib>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</creatorcontrib><description>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00780-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Austenitic stainless steels ; Biomaterials ; Chemistry and Materials Science ; Crack propagation ; Criteria ; Dislocation density ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; Inorganic Chemistry ; Intergranular fracture ; Materials Engineering ; Materials research ; Materials Science ; Molecular dynamics ; Nanotechnology ; Nucleation ; Plastic deformation ; Propagation ; Simulation</subject><ispartof>Journal of materials research, 2022-12, Vol.37 (23), p.4153-4168</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</citedby><cites>FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Limin</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hao, Weixun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Jingchuan</creatorcontrib><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Austenitic stainless steels</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Criteria</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>Inorganic Chemistry</subject><subject>Intergranular fracture</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Propagation</subject><subject>Simulation</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9Fkkpj0KIv_YMWLnkOaTpcu3XZN0sN-e-NW8OZphsfvvRkeIdeC3wqtzV1SUhvLOADj3FjO4IQsgCvFtIT7U7Lg1ioGlVDn5CKlLedCc6MWZPs29him3kfaHAa_60KiqdsVIXfjwGqfsKER9xETDvko0rGl3ZAxbqIfjs42-pCniHQfx4ApYSoA9VPKOHS5C7Qs2F-Ss9b3Ca9-55J8Pj1-rF7Y-v35dfWwZkGKKrMKIUBjFRhphBbS6CC9bYKRdWsqAbWUPICCqoZGq7oRENArbxCsbESQcklu5tzyzdeEKbvtOMWhnHRglJbWAPxQMFMhjilFbN0-djsfD05w99Opmzt1pVN37NRBMcnZlAo8bDD-Rf_j-gYYsXwN</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Wei, Limin</creator><creator>Zhou, Fei</creator><creator>Wang, Shuo</creator><creator>Hao, Weixun</creator><creator>Liu, Yong</creator><creator>Zhu, Jingchuan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221214</creationdate><title>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</title><author>Wei, Limin ; Zhou, Fei ; Wang, Shuo ; Hao, Weixun ; Liu, Yong ; Zhu, Jingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Austenitic stainless steels</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Criteria</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>Inorganic Chemistry</topic><topic>Intergranular fracture</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Limin</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hao, Weixun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Jingchuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Limin</au><au>Zhou, Fei</au><au>Wang, Shuo</au><au>Hao, Weixun</au><au>Liu, Yong</au><au>Zhu, Jingchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-12-14</date><risdate>2022</risdate><volume>37</volume><issue>23</issue><spage>4153</spage><epage>4168</epage><pages>4153-4168</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>In this paper, the propagation behavior of grain boundary crack in austenitic steel at different temperatures is investigated by molecular dynamics simulation. The evolution of microstructure and dislocations during crack propagation is observed. As the temperature increases, the peak dislocation density of the system increases and the time of dislocation nucleation advances (the time at which the strain is 0% is defined as 0 ps). However, the dislocation variation at 873 K does not follow this pattern, which may be related to the diffuse distribution of disordered atoms. Additionally, the crack propagation can be divided into three stages: (I) passivation, (II) rapid extension and (III) fracture. The crack propagation rate is negatively correlated with the peak dislocation density in stage I. As the temperature increases, the crack propagation manner undergoes a transformation process of brittle, ductile–brittle mixture, and ductile. The fracture mode and crystal plastic deformation form are predicted using Rice criterion and Tadmor-Hai criterion, respectively. It is indicated that the theoretical predictions are consistent with the simulation results.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00780-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-12, Vol.37 (23), p.4153-4168 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2745387223 |
source | Springer Nature |
subjects | Applied and Technical Physics Austenitic stainless steels Biomaterials Chemistry and Materials Science Crack propagation Criteria Dislocation density Ductile fracture Ductile-brittle transition Grain boundaries Inorganic Chemistry Intergranular fracture Materials Engineering Materials research Materials Science Molecular dynamics Nanotechnology Nucleation Plastic deformation Propagation Simulation |
title | Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation-based%20representation%20of%20intergranular%20fracture%20processes%20in%20austenitic%20steel&rft.jtitle=Journal%20of%20materials%20research&rft.au=Wei,%20Limin&rft.date=2022-12-14&rft.volume=37&rft.issue=23&rft.spage=4153&rft.epage=4168&rft.pages=4153-4168&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00780-2&rft_dat=%3Cproquest_cross%3E2745387223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9e2c2d842737151375c3a8dc73bf7912b330c2429b2d54bd12cea4a7e283d1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745387223&rft_id=info:pmid/&rfr_iscdi=true |