Loading…

Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules

We show that the coadmissibility of the Iwasawa cohomology of an \(L\)-analytic Lubin-Tate \((\varphi_L,\Gamma_L)\)-module \(M\) is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly spea...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Author: Steingart, Rustam
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steingart, Rustam
description We show that the coadmissibility of the Iwasawa cohomology of an \(L\)-analytic Lubin-Tate \((\varphi_L,\Gamma_L)\)-module \(M\) is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is given by the base change of \(M\) to the algebra of \(L\)-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be ``propagated'' to a reasonably large class of modules, provided it can be proven in the étale case.
doi_str_mv 10.48550/arxiv.2212.02275
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747126297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747126297</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-9a3c2bed6da1e5f3738987c2a3a66445f77c228b193d110a2e6f48663b0e6d193</originalsourceid><addsrcrecordid>eNotjs1qwkAURodCoWJ9AHeBbhSadObO_6oUqVYIuHEZCDfJpEaSjs0YrW_fQLv6OGdx-AiZM5oIIyV9wf6nuSQADBIKoOUdmQDnLDYC4IHMQjhSSkFpkJJPyOv2igGvGJX-4Dvf-s9b5OsIv7C9nZsyyhaL7IL96dDk6XO2wa7DPF1my7jz1dC68Ejua2yDm_3vlOzX7_vVR5zuNtvVWxqjlTK2yEsoXKUqZE7WXHNjjS4BOSolhKz1CGAKZnnFGEVwqhZGKV5Qp6rRTsnTX_bU--_BhXN-9EM_ngw5aKEZKLCa_wKES0kh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747126297</pqid></control><display><type>article</type><title>Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules</title><source>Publicly Available Content (ProQuest)</source><creator>Steingart, Rustam</creator><creatorcontrib>Steingart, Rustam</creatorcontrib><description>We show that the coadmissibility of the Iwasawa cohomology of an \(L\)-analytic Lubin-Tate \((\varphi_L,\Gamma_L)\)-module \(M\) is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is given by the base change of \(M\) to the algebra of \(L\)-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be ``propagated'' to a reasonably large class of modules, provided it can be proven in the étale case.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2212.02275</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Isomorphism ; Mathematical analysis ; Modules</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2747126297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Steingart, Rustam</creatorcontrib><title>Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules</title><title>arXiv.org</title><description>We show that the coadmissibility of the Iwasawa cohomology of an \(L\)-analytic Lubin-Tate \((\varphi_L,\Gamma_L)\)-module \(M\) is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is given by the base change of \(M\) to the algebra of \(L\)-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be ``propagated'' to a reasonably large class of modules, provided it can be proven in the étale case.</description><subject>Homology</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1qwkAURodCoWJ9AHeBbhSadObO_6oUqVYIuHEZCDfJpEaSjs0YrW_fQLv6OGdx-AiZM5oIIyV9wf6nuSQADBIKoOUdmQDnLDYC4IHMQjhSSkFpkJJPyOv2igGvGJX-4Dvf-s9b5OsIv7C9nZsyyhaL7IL96dDk6XO2wa7DPF1my7jz1dC68Ejua2yDm_3vlOzX7_vVR5zuNtvVWxqjlTK2yEsoXKUqZE7WXHNjjS4BOSolhKz1CGAKZnnFGEVwqhZGKV5Qp6rRTsnTX_bU--_BhXN-9EM_ngw5aKEZKLCa_wKES0kh</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Steingart, Rustam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241025</creationdate><title>Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules</title><author>Steingart, Rustam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-9a3c2bed6da1e5f3738987c2a3a66445f77c228b193d110a2e6f48663b0e6d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Steingart, Rustam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steingart, Rustam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules</atitle><jtitle>arXiv.org</jtitle><date>2024-10-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show that the coadmissibility of the Iwasawa cohomology of an \(L\)-analytic Lubin-Tate \((\varphi_L,\Gamma_L)\)-module \(M\) is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is given by the base change of \(M\) to the algebra of \(L\)-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be ``propagated'' to a reasonably large class of modules, provided it can be proven in the étale case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2212.02275</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2747126297
source Publicly Available Content (ProQuest)
subjects Homology
Isomorphism
Mathematical analysis
Modules
title Iwasawa cohomology of analytic \((\varphi_L,\Gamma_L)\)-modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iwasawa%20cohomology%20of%20analytic%20%5C((%5Cvarphi_L,%5CGamma_L)%5C)-modules&rft.jtitle=arXiv.org&rft.au=Steingart,%20Rustam&rft.date=2024-10-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2212.02275&rft_dat=%3Cproquest%3E2747126297%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-9a3c2bed6da1e5f3738987c2a3a66445f77c228b193d110a2e6f48663b0e6d193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747126297&rft_id=info:pmid/&rfr_iscdi=true