Loading…

Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach

Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2023, Vol.18, p.190-205
Main Authors: Vitek, Matej, Das, Abhijit, Lucio, Diego Rafael, Zanlorensi, Luiz Antonio, Menotti, David, Khiarak, Jalil Nourmohammadi, Shahpar, Mohsen Akbari, Asgari-Chenaghlu, Meysam, Jaryani, Farhang, Tapia, Juan E., Valenzuela, Andres, Wang, Caiyong, Wang, Yunlong, He, Zhaofeng, Sun, Zhenan, Boutros, Fadi, Damer, Naser, Grebe, Jonas Henry, Kuijper, Arjan, Raja, Kiran, Gupta, Gourav, Zampoukis, Georgios, Tsochatzidis, Lazaros, Pratikakis, Ioannis, Kumar, S. V. Aruna, Harish, B. S., Pal, Umapada, Peer, Peter, Struc, Vitomir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853
cites cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853
container_end_page 205
container_issue
container_start_page 190
container_title IEEE transactions on information forensics and security
container_volume 18
creator Vitek, Matej
Das, Abhijit
Lucio, Diego Rafael
Zanlorensi, Luiz Antonio
Menotti, David
Khiarak, Jalil Nourmohammadi
Shahpar, Mohsen Akbari
Asgari-Chenaghlu, Meysam
Jaryani, Farhang
Tapia, Juan E.
Valenzuela, Andres
Wang, Caiyong
Wang, Yunlong
He, Zhaofeng
Sun, Zhenan
Boutros, Fadi
Damer, Naser
Grebe, Jonas Henry
Kuijper, Arjan
Raja, Kiran
Gupta, Gourav
Zampoukis, Georgios
Tsochatzidis, Lazaros
Pratikakis, Ioannis
Kumar, S. V. Aruna
Harish, B. S.
Pal, Umapada
Peer, Peter
Struc, Vitomir
description Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.
doi_str_mv 10.1109/TIFS.2022.3216468
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747609923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926136</ieee_id><sourcerecordid>2747609923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6s19JvFVpa6HiofW8bDabmpJm424i-u9NSOlpBub9GB6E7oHMAEj6tFsvtzNKKJ0xCpLL5AJNQAgZSULh8rwDu0Y3IRwI4RxkMkHrxW9TOV_We_xS6oDLGm9NZb3GW7s_2rrVbelq_O5yW4VnPMcr77oGL3501Y2nedN4p83XLboqdBXs3WlO0edysXt9izYfq_XrfBMZxmQbUZFwLaWNIbNakxwsGT5Jc52ZIjXAE8FBEFJkJGM8MYUQsTGSxmma5SwRbIoex9y-9ruzoVUH1_m6r1Q05rEkaUpZr4JRZbwLwdtCNb48av-ngKiBmBqIqYGYOhHrPQ-jp7TWnvV9nAQm2T_5q2YJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609923</pqid></control><display><type>article</type><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</creator><creatorcontrib>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</creatorcontrib><description>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3216468</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bias ; Biological system modeling ; Biometrics ; Biometrics (access control) ; Decision making ; Ethnicity ; fairness ; Image segmentation ; Iris recognition ; Lighting ; ocular biometrics ; Performance evaluation ; sclera segmentation ; Semantic segmentation ; Task analysis</subject><ispartof>IEEE transactions on information forensics and security, 2023, Vol.18, p.190-205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</citedby><cites>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</cites><orcidid>0000-0001-9159-4075 ; 0000-0001-7341-3904 ; 0000-0003-4516-9128 ; 0000-0001-9824-2136 ; 0000-0002-1928-9081 ; 0000-0002-6413-0061 ; 0000-0002-3385-5780 ; 0000-0002-8172-1541 ; 0000-0003-4029-9935 ; 0000-0003-2430-2030 ; 0000-0001-7910-7895 ; 0000-0003-2545-0588 ; 0000-0002-5426-2618 ; 0000-0001-9744-4035 ; 0000-0002-9489-5161 ; 0000-0003-2012-3676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vitek, Matej</creatorcontrib><creatorcontrib>Das, Abhijit</creatorcontrib><creatorcontrib>Lucio, Diego Rafael</creatorcontrib><creatorcontrib>Zanlorensi, Luiz Antonio</creatorcontrib><creatorcontrib>Menotti, David</creatorcontrib><creatorcontrib>Khiarak, Jalil Nourmohammadi</creatorcontrib><creatorcontrib>Shahpar, Mohsen Akbari</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Jaryani, Farhang</creatorcontrib><creatorcontrib>Tapia, Juan E.</creatorcontrib><creatorcontrib>Valenzuela, Andres</creatorcontrib><creatorcontrib>Wang, Caiyong</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>He, Zhaofeng</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Boutros, Fadi</creatorcontrib><creatorcontrib>Damer, Naser</creatorcontrib><creatorcontrib>Grebe, Jonas Henry</creatorcontrib><creatorcontrib>Kuijper, Arjan</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Gupta, Gourav</creatorcontrib><creatorcontrib>Zampoukis, Georgios</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Kumar, S. V. Aruna</creatorcontrib><creatorcontrib>Harish, B. S.</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Peer, Peter</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Decision making</subject><subject>Ethnicity</subject><subject>fairness</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Lighting</subject><subject>ocular biometrics</subject><subject>Performance evaluation</subject><subject>sclera segmentation</subject><subject>Semantic segmentation</subject><subject>Task analysis</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6s19JvFVpa6HiofW8bDabmpJm424i-u9NSOlpBub9GB6E7oHMAEj6tFsvtzNKKJ0xCpLL5AJNQAgZSULh8rwDu0Y3IRwI4RxkMkHrxW9TOV_We_xS6oDLGm9NZb3GW7s_2rrVbelq_O5yW4VnPMcr77oGL3501Y2nedN4p83XLboqdBXs3WlO0edysXt9izYfq_XrfBMZxmQbUZFwLaWNIbNakxwsGT5Jc52ZIjXAE8FBEFJkJGM8MYUQsTGSxmma5SwRbIoex9y-9ruzoVUH1_m6r1Q05rEkaUpZr4JRZbwLwdtCNb48av-ngKiBmBqIqYGYOhHrPQ-jp7TWnvV9nAQm2T_5q2YJ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Vitek, Matej</creator><creator>Das, Abhijit</creator><creator>Lucio, Diego Rafael</creator><creator>Zanlorensi, Luiz Antonio</creator><creator>Menotti, David</creator><creator>Khiarak, Jalil Nourmohammadi</creator><creator>Shahpar, Mohsen Akbari</creator><creator>Asgari-Chenaghlu, Meysam</creator><creator>Jaryani, Farhang</creator><creator>Tapia, Juan E.</creator><creator>Valenzuela, Andres</creator><creator>Wang, Caiyong</creator><creator>Wang, Yunlong</creator><creator>He, Zhaofeng</creator><creator>Sun, Zhenan</creator><creator>Boutros, Fadi</creator><creator>Damer, Naser</creator><creator>Grebe, Jonas Henry</creator><creator>Kuijper, Arjan</creator><creator>Raja, Kiran</creator><creator>Gupta, Gourav</creator><creator>Zampoukis, Georgios</creator><creator>Tsochatzidis, Lazaros</creator><creator>Pratikakis, Ioannis</creator><creator>Kumar, S. V. Aruna</creator><creator>Harish, B. S.</creator><creator>Pal, Umapada</creator><creator>Peer, Peter</creator><creator>Struc, Vitomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9159-4075</orcidid><orcidid>https://orcid.org/0000-0001-7341-3904</orcidid><orcidid>https://orcid.org/0000-0003-4516-9128</orcidid><orcidid>https://orcid.org/0000-0001-9824-2136</orcidid><orcidid>https://orcid.org/0000-0002-1928-9081</orcidid><orcidid>https://orcid.org/0000-0002-6413-0061</orcidid><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-8172-1541</orcidid><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0003-2430-2030</orcidid><orcidid>https://orcid.org/0000-0001-7910-7895</orcidid><orcidid>https://orcid.org/0000-0003-2545-0588</orcidid><orcidid>https://orcid.org/0000-0002-5426-2618</orcidid><orcidid>https://orcid.org/0000-0001-9744-4035</orcidid><orcidid>https://orcid.org/0000-0002-9489-5161</orcidid><orcidid>https://orcid.org/0000-0003-2012-3676</orcidid></search><sort><creationdate>2023</creationdate><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><author>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Decision making</topic><topic>Ethnicity</topic><topic>fairness</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Lighting</topic><topic>ocular biometrics</topic><topic>Performance evaluation</topic><topic>sclera segmentation</topic><topic>Semantic segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitek, Matej</creatorcontrib><creatorcontrib>Das, Abhijit</creatorcontrib><creatorcontrib>Lucio, Diego Rafael</creatorcontrib><creatorcontrib>Zanlorensi, Luiz Antonio</creatorcontrib><creatorcontrib>Menotti, David</creatorcontrib><creatorcontrib>Khiarak, Jalil Nourmohammadi</creatorcontrib><creatorcontrib>Shahpar, Mohsen Akbari</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Jaryani, Farhang</creatorcontrib><creatorcontrib>Tapia, Juan E.</creatorcontrib><creatorcontrib>Valenzuela, Andres</creatorcontrib><creatorcontrib>Wang, Caiyong</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>He, Zhaofeng</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Boutros, Fadi</creatorcontrib><creatorcontrib>Damer, Naser</creatorcontrib><creatorcontrib>Grebe, Jonas Henry</creatorcontrib><creatorcontrib>Kuijper, Arjan</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Gupta, Gourav</creatorcontrib><creatorcontrib>Zampoukis, Georgios</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Kumar, S. V. Aruna</creatorcontrib><creatorcontrib>Harish, B. S.</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Peer, Peter</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitek, Matej</au><au>Das, Abhijit</au><au>Lucio, Diego Rafael</au><au>Zanlorensi, Luiz Antonio</au><au>Menotti, David</au><au>Khiarak, Jalil Nourmohammadi</au><au>Shahpar, Mohsen Akbari</au><au>Asgari-Chenaghlu, Meysam</au><au>Jaryani, Farhang</au><au>Tapia, Juan E.</au><au>Valenzuela, Andres</au><au>Wang, Caiyong</au><au>Wang, Yunlong</au><au>He, Zhaofeng</au><au>Sun, Zhenan</au><au>Boutros, Fadi</au><au>Damer, Naser</au><au>Grebe, Jonas Henry</au><au>Kuijper, Arjan</au><au>Raja, Kiran</au><au>Gupta, Gourav</au><au>Zampoukis, Georgios</au><au>Tsochatzidis, Lazaros</au><au>Pratikakis, Ioannis</au><au>Kumar, S. V. Aruna</au><au>Harish, B. S.</au><au>Pal, Umapada</au><au>Peer, Peter</au><au>Struc, Vitomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023</date><risdate>2023</risdate><volume>18</volume><spage>190</spage><epage>205</epage><pages>190-205</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3216468</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9159-4075</orcidid><orcidid>https://orcid.org/0000-0001-7341-3904</orcidid><orcidid>https://orcid.org/0000-0003-4516-9128</orcidid><orcidid>https://orcid.org/0000-0001-9824-2136</orcidid><orcidid>https://orcid.org/0000-0002-1928-9081</orcidid><orcidid>https://orcid.org/0000-0002-6413-0061</orcidid><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-8172-1541</orcidid><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0003-2430-2030</orcidid><orcidid>https://orcid.org/0000-0001-7910-7895</orcidid><orcidid>https://orcid.org/0000-0003-2545-0588</orcidid><orcidid>https://orcid.org/0000-0002-5426-2618</orcidid><orcidid>https://orcid.org/0000-0001-9744-4035</orcidid><orcidid>https://orcid.org/0000-0002-9489-5161</orcidid><orcidid>https://orcid.org/0000-0003-2012-3676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2023, Vol.18, p.190-205
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_2747609923
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Bias
Biological system modeling
Biometrics
Biometrics (access control)
Decision making
Ethnicity
fairness
Image segmentation
Iris recognition
Lighting
ocular biometrics
Performance evaluation
sclera segmentation
Semantic segmentation
Task analysis
title Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Bias%20in%20Sclera%20Segmentation%20Models:%20A%20Group%20Evaluation%20Approach&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Vitek,%20Matej&rft.date=2023&rft.volume=18&rft.spage=190&rft.epage=205&rft.pages=190-205&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3216468&rft_dat=%3Cproquest_cross%3E2747609923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609923&rft_id=info:pmid/&rft_ieee_id=9926136&rfr_iscdi=true