Loading…
Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach
Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different...
Saved in:
Published in: | IEEE transactions on information forensics and security 2023, Vol.18, p.190-205 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853 |
container_end_page | 205 |
container_issue | |
container_start_page | 190 |
container_title | IEEE transactions on information forensics and security |
container_volume | 18 |
creator | Vitek, Matej Das, Abhijit Lucio, Diego Rafael Zanlorensi, Luiz Antonio Menotti, David Khiarak, Jalil Nourmohammadi Shahpar, Mohsen Akbari Asgari-Chenaghlu, Meysam Jaryani, Farhang Tapia, Juan E. Valenzuela, Andres Wang, Caiyong Wang, Yunlong He, Zhaofeng Sun, Zhenan Boutros, Fadi Damer, Naser Grebe, Jonas Henry Kuijper, Arjan Raja, Kiran Gupta, Gourav Zampoukis, Georgios Tsochatzidis, Lazaros Pratikakis, Ioannis Kumar, S. V. Aruna Harish, B. S. Pal, Umapada Peer, Peter Struc, Vitomir |
description | Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias. |
doi_str_mv | 10.1109/TIFS.2022.3216468 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747609923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926136</ieee_id><sourcerecordid>2747609923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6s19JvFVpa6HiofW8bDabmpJm424i-u9NSOlpBub9GB6E7oHMAEj6tFsvtzNKKJ0xCpLL5AJNQAgZSULh8rwDu0Y3IRwI4RxkMkHrxW9TOV_We_xS6oDLGm9NZb3GW7s_2rrVbelq_O5yW4VnPMcr77oGL3501Y2nedN4p83XLboqdBXs3WlO0edysXt9izYfq_XrfBMZxmQbUZFwLaWNIbNakxwsGT5Jc52ZIjXAE8FBEFJkJGM8MYUQsTGSxmma5SwRbIoex9y-9ruzoVUH1_m6r1Q05rEkaUpZr4JRZbwLwdtCNb48av-ngKiBmBqIqYGYOhHrPQ-jp7TWnvV9nAQm2T_5q2YJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609923</pqid></control><display><type>article</type><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</creator><creatorcontrib>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</creatorcontrib><description>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3216468</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bias ; Biological system modeling ; Biometrics ; Biometrics (access control) ; Decision making ; Ethnicity ; fairness ; Image segmentation ; Iris recognition ; Lighting ; ocular biometrics ; Performance evaluation ; sclera segmentation ; Semantic segmentation ; Task analysis</subject><ispartof>IEEE transactions on information forensics and security, 2023, Vol.18, p.190-205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</citedby><cites>FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</cites><orcidid>0000-0001-9159-4075 ; 0000-0001-7341-3904 ; 0000-0003-4516-9128 ; 0000-0001-9824-2136 ; 0000-0002-1928-9081 ; 0000-0002-6413-0061 ; 0000-0002-3385-5780 ; 0000-0002-8172-1541 ; 0000-0003-4029-9935 ; 0000-0003-2430-2030 ; 0000-0001-7910-7895 ; 0000-0003-2545-0588 ; 0000-0002-5426-2618 ; 0000-0001-9744-4035 ; 0000-0002-9489-5161 ; 0000-0003-2012-3676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vitek, Matej</creatorcontrib><creatorcontrib>Das, Abhijit</creatorcontrib><creatorcontrib>Lucio, Diego Rafael</creatorcontrib><creatorcontrib>Zanlorensi, Luiz Antonio</creatorcontrib><creatorcontrib>Menotti, David</creatorcontrib><creatorcontrib>Khiarak, Jalil Nourmohammadi</creatorcontrib><creatorcontrib>Shahpar, Mohsen Akbari</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Jaryani, Farhang</creatorcontrib><creatorcontrib>Tapia, Juan E.</creatorcontrib><creatorcontrib>Valenzuela, Andres</creatorcontrib><creatorcontrib>Wang, Caiyong</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>He, Zhaofeng</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Boutros, Fadi</creatorcontrib><creatorcontrib>Damer, Naser</creatorcontrib><creatorcontrib>Grebe, Jonas Henry</creatorcontrib><creatorcontrib>Kuijper, Arjan</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Gupta, Gourav</creatorcontrib><creatorcontrib>Zampoukis, Georgios</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Kumar, S. V. Aruna</creatorcontrib><creatorcontrib>Harish, B. S.</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Peer, Peter</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Decision making</subject><subject>Ethnicity</subject><subject>fairness</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Lighting</subject><subject>ocular biometrics</subject><subject>Performance evaluation</subject><subject>sclera segmentation</subject><subject>Semantic segmentation</subject><subject>Task analysis</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6s19JvFVpa6HiofW8bDabmpJm424i-u9NSOlpBub9GB6E7oHMAEj6tFsvtzNKKJ0xCpLL5AJNQAgZSULh8rwDu0Y3IRwI4RxkMkHrxW9TOV_We_xS6oDLGm9NZb3GW7s_2rrVbelq_O5yW4VnPMcr77oGL3501Y2nedN4p83XLboqdBXs3WlO0edysXt9izYfq_XrfBMZxmQbUZFwLaWNIbNakxwsGT5Jc52ZIjXAE8FBEFJkJGM8MYUQsTGSxmma5SwRbIoex9y-9ruzoVUH1_m6r1Q05rEkaUpZr4JRZbwLwdtCNb48av-ngKiBmBqIqYGYOhHrPQ-jp7TWnvV9nAQm2T_5q2YJ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Vitek, Matej</creator><creator>Das, Abhijit</creator><creator>Lucio, Diego Rafael</creator><creator>Zanlorensi, Luiz Antonio</creator><creator>Menotti, David</creator><creator>Khiarak, Jalil Nourmohammadi</creator><creator>Shahpar, Mohsen Akbari</creator><creator>Asgari-Chenaghlu, Meysam</creator><creator>Jaryani, Farhang</creator><creator>Tapia, Juan E.</creator><creator>Valenzuela, Andres</creator><creator>Wang, Caiyong</creator><creator>Wang, Yunlong</creator><creator>He, Zhaofeng</creator><creator>Sun, Zhenan</creator><creator>Boutros, Fadi</creator><creator>Damer, Naser</creator><creator>Grebe, Jonas Henry</creator><creator>Kuijper, Arjan</creator><creator>Raja, Kiran</creator><creator>Gupta, Gourav</creator><creator>Zampoukis, Georgios</creator><creator>Tsochatzidis, Lazaros</creator><creator>Pratikakis, Ioannis</creator><creator>Kumar, S. V. Aruna</creator><creator>Harish, B. S.</creator><creator>Pal, Umapada</creator><creator>Peer, Peter</creator><creator>Struc, Vitomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9159-4075</orcidid><orcidid>https://orcid.org/0000-0001-7341-3904</orcidid><orcidid>https://orcid.org/0000-0003-4516-9128</orcidid><orcidid>https://orcid.org/0000-0001-9824-2136</orcidid><orcidid>https://orcid.org/0000-0002-1928-9081</orcidid><orcidid>https://orcid.org/0000-0002-6413-0061</orcidid><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-8172-1541</orcidid><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0003-2430-2030</orcidid><orcidid>https://orcid.org/0000-0001-7910-7895</orcidid><orcidid>https://orcid.org/0000-0003-2545-0588</orcidid><orcidid>https://orcid.org/0000-0002-5426-2618</orcidid><orcidid>https://orcid.org/0000-0001-9744-4035</orcidid><orcidid>https://orcid.org/0000-0002-9489-5161</orcidid><orcidid>https://orcid.org/0000-0003-2012-3676</orcidid></search><sort><creationdate>2023</creationdate><title>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</title><author>Vitek, Matej ; Das, Abhijit ; Lucio, Diego Rafael ; Zanlorensi, Luiz Antonio ; Menotti, David ; Khiarak, Jalil Nourmohammadi ; Shahpar, Mohsen Akbari ; Asgari-Chenaghlu, Meysam ; Jaryani, Farhang ; Tapia, Juan E. ; Valenzuela, Andres ; Wang, Caiyong ; Wang, Yunlong ; He, Zhaofeng ; Sun, Zhenan ; Boutros, Fadi ; Damer, Naser ; Grebe, Jonas Henry ; Kuijper, Arjan ; Raja, Kiran ; Gupta, Gourav ; Zampoukis, Georgios ; Tsochatzidis, Lazaros ; Pratikakis, Ioannis ; Kumar, S. V. Aruna ; Harish, B. S. ; Pal, Umapada ; Peer, Peter ; Struc, Vitomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Decision making</topic><topic>Ethnicity</topic><topic>fairness</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Lighting</topic><topic>ocular biometrics</topic><topic>Performance evaluation</topic><topic>sclera segmentation</topic><topic>Semantic segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitek, Matej</creatorcontrib><creatorcontrib>Das, Abhijit</creatorcontrib><creatorcontrib>Lucio, Diego Rafael</creatorcontrib><creatorcontrib>Zanlorensi, Luiz Antonio</creatorcontrib><creatorcontrib>Menotti, David</creatorcontrib><creatorcontrib>Khiarak, Jalil Nourmohammadi</creatorcontrib><creatorcontrib>Shahpar, Mohsen Akbari</creatorcontrib><creatorcontrib>Asgari-Chenaghlu, Meysam</creatorcontrib><creatorcontrib>Jaryani, Farhang</creatorcontrib><creatorcontrib>Tapia, Juan E.</creatorcontrib><creatorcontrib>Valenzuela, Andres</creatorcontrib><creatorcontrib>Wang, Caiyong</creatorcontrib><creatorcontrib>Wang, Yunlong</creatorcontrib><creatorcontrib>He, Zhaofeng</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Boutros, Fadi</creatorcontrib><creatorcontrib>Damer, Naser</creatorcontrib><creatorcontrib>Grebe, Jonas Henry</creatorcontrib><creatorcontrib>Kuijper, Arjan</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Gupta, Gourav</creatorcontrib><creatorcontrib>Zampoukis, Georgios</creatorcontrib><creatorcontrib>Tsochatzidis, Lazaros</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Kumar, S. V. Aruna</creatorcontrib><creatorcontrib>Harish, B. S.</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Peer, Peter</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitek, Matej</au><au>Das, Abhijit</au><au>Lucio, Diego Rafael</au><au>Zanlorensi, Luiz Antonio</au><au>Menotti, David</au><au>Khiarak, Jalil Nourmohammadi</au><au>Shahpar, Mohsen Akbari</au><au>Asgari-Chenaghlu, Meysam</au><au>Jaryani, Farhang</au><au>Tapia, Juan E.</au><au>Valenzuela, Andres</au><au>Wang, Caiyong</au><au>Wang, Yunlong</au><au>He, Zhaofeng</au><au>Sun, Zhenan</au><au>Boutros, Fadi</au><au>Damer, Naser</au><au>Grebe, Jonas Henry</au><au>Kuijper, Arjan</au><au>Raja, Kiran</au><au>Gupta, Gourav</au><au>Zampoukis, Georgios</au><au>Tsochatzidis, Lazaros</au><au>Pratikakis, Ioannis</au><au>Kumar, S. V. Aruna</au><au>Harish, B. S.</au><au>Pal, Umapada</au><au>Peer, Peter</au><au>Struc, Vitomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023</date><risdate>2023</risdate><volume>18</volume><spage>190</spage><epage>205</epage><pages>190-205</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Bias and fairness of biometric algorithms have been key topics of research in recent years, mainly due to the societal, legal and ethical implications of potentially unfair decisions made by automated decision-making models. A considerable amount of work has been done on this topic across different biometric modalities, aiming at better understanding the main sources of algorithmic bias or devising mitigation measures. In this work, we contribute to these efforts and present the first study investigating bias and fairness of sclera segmentation models. Although sclera segmentation techniques represent a key component of sclera-based biometric systems with a considerable impact on the overall recognition performance, the presence of different types of biases in sclera segmentation methods is still underexplored. To address this limitation, we describe the results of a group evaluation effort (involving seven research groups), organized to explore the performance of recent sclera segmentation models within a common experimental framework and study performance differences (and bias), originating from various demographic as well as environmental factors. Using five diverse datasets, we analyze seven independently developed sclera segmentation models in different experimental configurations. The results of our experiments suggest that there are significant differences in the overall segmentation performance across the seven models and that among the considered factors, ethnicity appears to be the biggest cause of bias. Additionally, we observe that training with representative and balanced data does not necessarily lead to less biased results. Finally, we find that in general there appears to be a negative correlation between the amount of bias observed (due to eye color, ethnicity and acquisition device) and the overall segmentation performance, suggesting that advances in the field of semantic segmentation may also help with mitigating bias.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3216468</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9159-4075</orcidid><orcidid>https://orcid.org/0000-0001-7341-3904</orcidid><orcidid>https://orcid.org/0000-0003-4516-9128</orcidid><orcidid>https://orcid.org/0000-0001-9824-2136</orcidid><orcidid>https://orcid.org/0000-0002-1928-9081</orcidid><orcidid>https://orcid.org/0000-0002-6413-0061</orcidid><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-8172-1541</orcidid><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0003-2430-2030</orcidid><orcidid>https://orcid.org/0000-0001-7910-7895</orcidid><orcidid>https://orcid.org/0000-0003-2545-0588</orcidid><orcidid>https://orcid.org/0000-0002-5426-2618</orcidid><orcidid>https://orcid.org/0000-0001-9744-4035</orcidid><orcidid>https://orcid.org/0000-0002-9489-5161</orcidid><orcidid>https://orcid.org/0000-0003-2012-3676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2023, Vol.18, p.190-205 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_2747609923 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Bias Biological system modeling Biometrics Biometrics (access control) Decision making Ethnicity fairness Image segmentation Iris recognition Lighting ocular biometrics Performance evaluation sclera segmentation Semantic segmentation Task analysis |
title | Exploring Bias in Sclera Segmentation Models: A Group Evaluation Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Bias%20in%20Sclera%20Segmentation%20Models:%20A%20Group%20Evaluation%20Approach&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Vitek,%20Matej&rft.date=2023&rft.volume=18&rft.spage=190&rft.epage=205&rft.pages=190-205&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3216468&rft_dat=%3Cproquest_cross%3E2747609923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-2584a66e71beaa0d1e041689dabcf9c148541500fb0b348cf557cc62799bd3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609923&rft_id=info:pmid/&rft_ieee_id=9926136&rfr_iscdi=true |