Loading…
Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. First, we present a functional whose mini...
Saved in:
Published in: | IEEE transactions on energy conversion 2022-12, Vol.37 (4), p.2678-2689 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. First, we present a functional whose minimization is equivalent to solving parametric magnetostatic problems. Subsequently, we use a deep neural network (DNN) to represent the magnetic field as a function of space and parameters that describe geometric features and operating points. We train the DNN by minimizing the physics-informed functional using stochastic gradient descent. Lastly, we demonstrate our approach on a ten-dimensional EI-core electromagnet problem with parameterized geometry. We evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis. |
---|---|
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2022.3180295 |