Loading…
A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition
In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynom...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2022-12, Vol.147 (24), p.14649-14657 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23 |
container_end_page | 14657 |
container_issue | 24 |
container_start_page | 14649 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 147 |
creator | Kumar, Abhishek Rajeev Gómez-Aguilar, J. F. |
description | In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters
α
and
δ
on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters
α
or/and
δ
increase. |
doi_str_mv | 10.1007/s10973-022-11590-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2747917150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729304656</galeid><sourcerecordid>A729304656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</originalsourceid><addsrcrecordid>eNp9kUtr3DAQgE1poGnSP9CToKdCnY4kv3RcQh-BQCGPsxjL410FW9pKctL8jv7hateFkkvRQYP0fZrRTFG853DBAdrPkYNqZQlClJzXCkr5qjjlddeVQonmdY5ljhtew5vibYwPAKAU8NPi94a5ZaZgDU4s-mlJ1jvmR4bMeVeaCWM83t0mGtGxffD9RDN7smnH4h4NlQPtyQ3kEks7CnNmjXfDYpJ9tOn5E3vEYDFLbMJ0oHaEiaEb2I3vrWO9X9yA4flo2UP68-JkxCnSu7_7WXH_9cvd5ffy-se3q8vNdWmkEKk0tUBqoBfQ9ao3XV2NFUmF0IiOeGWE5ISix6E3VFUShIKuQeQVmKFBEvKs-LC-mz_1c6GY9INfgssptWirVvE29ytTFyu1xYm0daNPAU1eA80210yjzeebVigJVVM3Wfj4QshMol9pi0uM-ur25iUrVtYEH2OgUe-DnXM3NAd9mKxeJ6vzZPVxslpmSa5SzLDbUvhX93-sPzDEqBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747917150</pqid></control><display><type>article</type><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><source>Springer Nature</source><creator>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</creator><creatorcontrib>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</creatorcontrib><description>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters
α
and
δ
on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters
α
or/and
δ
increase.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-022-11590-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analytical Chemistry ; Boundary conditions ; Chemistry ; Chemistry and Materials Science ; Exact solutions ; Finite difference method ; Heat conductivity ; Heat transfer ; Inorganic Chemistry ; Latent heat ; Matrix methods ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Polynomials ; Temperature distribution ; Thermal conductivity</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (24), p.14649-14657</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</citedby><cites>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</cites><orcidid>0000-0001-9403-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Rajeev</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters
α
and
δ
on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters
α
or/and
δ
increase.</description><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Latent heat</subject><subject>Matrix methods</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polynomials</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAQgE1poGnSP9CToKdCnY4kv3RcQh-BQCGPsxjL410FW9pKctL8jv7hateFkkvRQYP0fZrRTFG853DBAdrPkYNqZQlClJzXCkr5qjjlddeVQonmdY5ljhtew5vibYwPAKAU8NPi94a5ZaZgDU4s-mlJ1jvmR4bMeVeaCWM83t0mGtGxffD9RDN7smnH4h4NlQPtyQ3kEks7CnNmjXfDYpJ9tOn5E3vEYDFLbMJ0oHaEiaEb2I3vrWO9X9yA4flo2UP68-JkxCnSu7_7WXH_9cvd5ffy-se3q8vNdWmkEKk0tUBqoBfQ9ao3XV2NFUmF0IiOeGWE5ISix6E3VFUShIKuQeQVmKFBEvKs-LC-mz_1c6GY9INfgssptWirVvE29ytTFyu1xYm0daNPAU1eA80210yjzeebVigJVVM3Wfj4QshMol9pi0uM-ur25iUrVtYEH2OgUe-DnXM3NAd9mKxeJ6vzZPVxslpmSa5SzLDbUvhX93-sPzDEqBY</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kumar, Abhishek</creator><creator>Rajeev</creator><creator>Gómez-Aguilar, J. F.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></search><sort><creationdate>20221201</creationdate><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><author>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Latent heat</topic><topic>Matrix methods</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polynomials</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Rajeev</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Abhishek</au><au>Rajeev</au><au>Gómez-Aguilar, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>147</volume><issue>24</issue><spage>14649</spage><epage>14657</epage><pages>14649-14657</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters
α
and
δ
on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters
α
or/and
δ
increase.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-022-11590-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (24), p.14649-14657 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2747917150 |
source | Springer Nature |
subjects | Algorithms Analytical Chemistry Boundary conditions Chemistry Chemistry and Materials Science Exact solutions Finite difference method Heat conductivity Heat transfer Inorganic Chemistry Latent heat Matrix methods Measurement Science and Instrumentation Parameters Physical Chemistry Polymer Sciences Polynomials Temperature distribution Thermal conductivity |
title | A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20of%20a%20non-classical%20Stefan%20problem%20with%20space-dependent%20thermal%20conductivity,%20variable%20latent%20heat%20and%20Robin%20boundary%20condition&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Kumar,%20Abhishek&rft.date=2022-12-01&rft.volume=147&rft.issue=24&rft.spage=14649&rft.epage=14657&rft.pages=14649-14657&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-022-11590-3&rft_dat=%3Cgale_proqu%3EA729304656%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747917150&rft_id=info:pmid/&rft_galeid=A729304656&rfr_iscdi=true |