Loading…

A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition

In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynom...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2022-12, Vol.147 (24), p.14649-14657
Main Authors: Kumar, Abhishek, Rajeev, Gómez-Aguilar, J. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23
cites cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23
container_end_page 14657
container_issue 24
container_start_page 14649
container_title Journal of thermal analysis and calorimetry
container_volume 147
creator Kumar, Abhishek
Rajeev
Gómez-Aguilar, J. F.
description In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters α and δ on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters α or/and δ increase.
doi_str_mv 10.1007/s10973-022-11590-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2747917150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729304656</galeid><sourcerecordid>A729304656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</originalsourceid><addsrcrecordid>eNp9kUtr3DAQgE1poGnSP9CToKdCnY4kv3RcQh-BQCGPsxjL410FW9pKctL8jv7hateFkkvRQYP0fZrRTFG853DBAdrPkYNqZQlClJzXCkr5qjjlddeVQonmdY5ljhtew5vibYwPAKAU8NPi94a5ZaZgDU4s-mlJ1jvmR4bMeVeaCWM83t0mGtGxffD9RDN7smnH4h4NlQPtyQ3kEks7CnNmjXfDYpJ9tOn5E3vEYDFLbMJ0oHaEiaEb2I3vrWO9X9yA4flo2UP68-JkxCnSu7_7WXH_9cvd5ffy-se3q8vNdWmkEKk0tUBqoBfQ9ao3XV2NFUmF0IiOeGWE5ISix6E3VFUShIKuQeQVmKFBEvKs-LC-mz_1c6GY9INfgssptWirVvE29ytTFyu1xYm0daNPAU1eA80210yjzeebVigJVVM3Wfj4QshMol9pi0uM-ur25iUrVtYEH2OgUe-DnXM3NAd9mKxeJ6vzZPVxslpmSa5SzLDbUvhX93-sPzDEqBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747917150</pqid></control><display><type>article</type><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><source>Springer Nature</source><creator>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</creator><creatorcontrib>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</creatorcontrib><description>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters α and δ on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters α or/and δ increase.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-022-11590-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analytical Chemistry ; Boundary conditions ; Chemistry ; Chemistry and Materials Science ; Exact solutions ; Finite difference method ; Heat conductivity ; Heat transfer ; Inorganic Chemistry ; Latent heat ; Matrix methods ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Polynomials ; Temperature distribution ; Thermal conductivity</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (24), p.14649-14657</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</citedby><cites>FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</cites><orcidid>0000-0001-9403-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Rajeev</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters α and δ on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters α or/and δ increase.</description><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Latent heat</subject><subject>Matrix methods</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polynomials</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAQgE1poGnSP9CToKdCnY4kv3RcQh-BQCGPsxjL410FW9pKctL8jv7hateFkkvRQYP0fZrRTFG853DBAdrPkYNqZQlClJzXCkr5qjjlddeVQonmdY5ljhtew5vibYwPAKAU8NPi94a5ZaZgDU4s-mlJ1jvmR4bMeVeaCWM83t0mGtGxffD9RDN7smnH4h4NlQPtyQ3kEks7CnNmjXfDYpJ9tOn5E3vEYDFLbMJ0oHaEiaEb2I3vrWO9X9yA4flo2UP68-JkxCnSu7_7WXH_9cvd5ffy-se3q8vNdWmkEKk0tUBqoBfQ9ao3XV2NFUmF0IiOeGWE5ISix6E3VFUShIKuQeQVmKFBEvKs-LC-mz_1c6GY9INfgssptWirVvE29ytTFyu1xYm0daNPAU1eA80210yjzeebVigJVVM3Wfj4QshMol9pi0uM-ur25iUrVtYEH2OgUe-DnXM3NAd9mKxeJ6vzZPVxslpmSa5SzLDbUvhX93-sPzDEqBY</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kumar, Abhishek</creator><creator>Rajeev</creator><creator>Gómez-Aguilar, J. F.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></search><sort><creationdate>20221201</creationdate><title>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</title><author>Kumar, Abhishek ; Rajeev ; Gómez-Aguilar, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Latent heat</topic><topic>Matrix methods</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polynomials</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Abhishek</creatorcontrib><creatorcontrib>Rajeev</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Abhishek</au><au>Rajeev</au><au>Gómez-Aguilar, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>147</volume><issue>24</issue><spage>14649</spage><epage>14657</epage><pages>14649-14657</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this article, we have considered a non-classical Stefan problem that involves the space-dependent thermal conductivity, variable latent heat and Robin boundary condition at the fixed boundary. The solution of the problem is obtained by using the operational matrix method based on Genocchi polynomials and the collocation scheme. To show the accuracy, we have compared the results obtained by the Genocchi operational matrix method and a finite difference scheme with the exact solution for a particular case of the considered Stefan problem. It is found that the proposed Genocchi operational matrix method is more accurate than the finite difference scheme. Moreover, it is shown that the proposed algorithm rapidly converges as the degree of Genocchi polynomials increases. We have also analyzed the effects of the parameters α and δ on the temperature distribution and the evolution of moving phase front in the case of the considered non-classical Stefan problem. It is observed that the phase change processes become fast as the parameters α or/and δ increase.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-022-11590-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (24), p.14649-14657
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2747917150
source Springer Nature
subjects Algorithms
Analytical Chemistry
Boundary conditions
Chemistry
Chemistry and Materials Science
Exact solutions
Finite difference method
Heat conductivity
Heat transfer
Inorganic Chemistry
Latent heat
Matrix methods
Measurement Science and Instrumentation
Parameters
Physical Chemistry
Polymer Sciences
Polynomials
Temperature distribution
Thermal conductivity
title A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20of%20a%20non-classical%20Stefan%20problem%20with%20space-dependent%20thermal%20conductivity,%20variable%20latent%20heat%20and%20Robin%20boundary%20condition&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Kumar,%20Abhishek&rft.date=2022-12-01&rft.volume=147&rft.issue=24&rft.spage=14649&rft.epage=14657&rft.pages=14649-14657&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-022-11590-3&rft_dat=%3Cgale_proqu%3EA729304656%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-c52ae60b208b9bc854f4e39a0628e14c231ea2badbce443029086aa140cd6ae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747917150&rft_id=info:pmid/&rft_galeid=A729304656&rfr_iscdi=true