Loading…
Comparison of One-Part and Two-Part Alkali-Activated Metakaolin and Blast Furnace Slag
One-part alkali-activated materials prepared with solid-form alkali activator are gaining attention in the construction industry, as they are an easier and safer approach for cast-in-situ applications in comparison with two-part approach (i.e., involving the use of alkali-activator solutions). The p...
Saved in:
Published in: | Journal of sustainable metallurgy 2022-12, Vol.8 (4), p.1816-1830 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One-part alkali-activated materials prepared with solid-form alkali activator are gaining attention in the construction industry, as they are an easier and safer approach for cast-in-situ applications in comparison with two-part approach (i.e., involving the use of alkali-activator solutions). The present study compares the one-part and conventional two-part mixing methods with two aluminosilicate precursors, metakaolin and ground granulated blast-furnace slag, using identical mix designs (in terms of molar ratios of SiO
2
, Al
2
O
3
, and Na
2
O) with both preparation methods. The results revealed that using one-part mix delays the setting time, increases the heat of reaction, decreases the shrinkage, and reaches between 80 and 85% of the compressive strength of the two-part mix. In addition, scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction analysis showed no major differences between one- and two-part. However, energy-dispersive X-ray spectroscopy and magic angle spinning nuclear magnetic resonance experiments indicated that the extent of reaction in two-part alkali-activated mixes is higher than for one-part.
Graphical Abstract |
---|---|
ISSN: | 2199-3823 2199-3831 |
DOI: | 10.1007/s40831-022-00606-9 |