Loading…

Buried Layer Low Gain Avalanche Diodes

We report on the design, simulation and test of Low Gain Avalanche Diodes (LGADs) which utilize a buried gain layer. The buried layer is formed by patterned implantation of a 50-micron thick float zone substrate wafer-bonded to a low resistivity carrier. This is then followed by epitaxial deposition...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2022-11, Vol.2374 (1), p.12166
Main Authors: Apresyan, A., Giacomini, G., Heller, R., Mannelli, M., Islam, R., Lipton, Ronald, Tricoli, A., Chen, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the design, simulation and test of Low Gain Avalanche Diodes (LGADs) which utilize a buried gain layer. The buried layer is formed by patterned implantation of a 50-micron thick float zone substrate wafer-bonded to a low resistivity carrier. This is then followed by epitaxial deposition of a ≈ 3 micron-thick high resistivity amplification region. The topside is then processed with junction edge termination and guard ring structures and incorporates an AC-coupled cathode implant. This design allows for independent adjustment of gain layer depth and density, increasing design flexibility. A higher gain layer dopant density can also be achieved by controlling the process thermal budget, improving radiation hardness. A first set of demonstration devices has been fabricated, including a variety of test structures. We report on TCAD design and simulation, fabrication process flow, and preliminary measurements of prototype devices.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2374/1/012166