Loading…
Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates
Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological and optical properties of the obtained structures were investigated experimentally by scanning electron microscopy...
Saved in:
Published in: | Coatings (Basel) 2022-11, Vol.12 (11), p.1678 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3 |
container_end_page | |
container_issue | 11 |
container_start_page | 1678 |
container_title | Coatings (Basel) |
container_volume | 12 |
creator | Khoroshko, Liudmila Baglov, Aleksey Orekhovskaya, Taisa Trukhanov, Sergei Tishkevich, Daria Trukhanov, Alex Raichenok, Tamara Kopots, Anatoly |
description | Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological and optical properties of the obtained structures were investigated experimentally by scanning electron microscopy and transmission spectroscopy. Obtained oxide coatings are quasi-ordered arrays of vertical (aluminum oxide/tantalum oxide, aluminum oxide/vanadium oxide, and aluminum oxide obtained in the oxalic electrolyte) or non-ordered tree-like (aluminum oxide obtained in the sulfuric–oxalic electrolyte) pores depending on the initial film metal and anodizing technology. The light transmission in the range of 750–1200 nm is up to 60% for aluminum oxide/tantalum oxide/glass (annealed) and quasi-ordered aluminum oxide/glass structures, and around 40% for aluminum oxide/tantalum oxide/glass (not annealed) and aluminum oxide/vanadium oxide. Non-ordered aluminum oxide is characterized by low transmission (no more than 8%) but has a developed surface and may be of interest for the formation of films with poor adhesion on smooth substrates, for example, photocatalytic active xerogels. The refractive indices of dispersion of the obtained layers were calculated from the transmission spectra by the envelope method. The dispersion of the refractive indices of the obtained oxide films is insignificant in a wide range of wavelengths, and the deviation from the average value is assumed to be observed near the intrinsic absorption edges of the films. The glasses with proposed semi-transparent nanostructured oxide layers are promising substrate structures for subsequent sol–gel coating layers used in photocatalytic purification systems or up-conversion modules of tandem silica solar cells with forward and reverse illumination. |
doi_str_mv | 10.3390/coatings12111678 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748277862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745498577</galeid><sourcerecordid>A745498577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3</originalsourceid><addsrcrecordid>eNpdUU1LAzEQXUTBUnv3GPDcmo_dzeZYSqtCpYLV65JNZtuUbbImqWB_van1IM4MzDC895jHZNktwRPGBL5XTkZjN4FQQkjJq4tsQDEX4zIn9PLPfJ2NQtjhFIKwiohBdlz10SjZoRfvevDRQECuRe-y-wT0DFF2AS0OVkXjbEKtt8aihen2Aa2aKI0FjZovNO9ARe_UFvY_YlPrtDnKEwmlWntpQy892IheD02IXkYIN9lVm-Rh9NuH2dtivp49jperh6fZdDlWrKBxLNuywopinQNXCgpVSSCy4VRQKpTAjOIcF0C1LtucMsxyKstWa1EyTkrdsGF2d9btvfs4QIj1zh18chNqyvOKcl6VNKEmZ9RGdlAb27p0pUqpT56chdak_ZTnRS6qgvNEwGeC8i4ED23de7OX_qsmuD59pf7_FfYNn4WDMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748277862</pqid></control><display><type>article</type><title>Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates</title><source>Publicly Available Content Database</source><creator>Khoroshko, Liudmila ; Baglov, Aleksey ; Orekhovskaya, Taisa ; Trukhanov, Sergei ; Tishkevich, Daria ; Trukhanov, Alex ; Raichenok, Tamara ; Kopots, Anatoly</creator><creatorcontrib>Khoroshko, Liudmila ; Baglov, Aleksey ; Orekhovskaya, Taisa ; Trukhanov, Sergei ; Tishkevich, Daria ; Trukhanov, Alex ; Raichenok, Tamara ; Kopots, Anatoly</creatorcontrib><description>Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological and optical properties of the obtained structures were investigated experimentally by scanning electron microscopy and transmission spectroscopy. Obtained oxide coatings are quasi-ordered arrays of vertical (aluminum oxide/tantalum oxide, aluminum oxide/vanadium oxide, and aluminum oxide obtained in the oxalic electrolyte) or non-ordered tree-like (aluminum oxide obtained in the sulfuric–oxalic electrolyte) pores depending on the initial film metal and anodizing technology. The light transmission in the range of 750–1200 nm is up to 60% for aluminum oxide/tantalum oxide/glass (annealed) and quasi-ordered aluminum oxide/glass structures, and around 40% for aluminum oxide/tantalum oxide/glass (not annealed) and aluminum oxide/vanadium oxide. Non-ordered aluminum oxide is characterized by low transmission (no more than 8%) but has a developed surface and may be of interest for the formation of films with poor adhesion on smooth substrates, for example, photocatalytic active xerogels. The refractive indices of dispersion of the obtained layers were calculated from the transmission spectra by the envelope method. The dispersion of the refractive indices of the obtained oxide films is insignificant in a wide range of wavelengths, and the deviation from the average value is assumed to be observed near the intrinsic absorption edges of the films. The glasses with proposed semi-transparent nanostructured oxide layers are promising substrate structures for subsequent sol–gel coating layers used in photocatalytic purification systems or up-conversion modules of tandem silica solar cells with forward and reverse illumination.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12111678</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Analysis ; Annealing ; Anodizing ; Coatings ; Composite materials ; Dielectric films ; Electrolytes ; Electrolytic cells ; Experiments ; Glass substrates ; Light ; Light transmission ; Metals ; Nanostructure ; Nanostructured materials ; Optical properties ; Oxidation ; Oxide coatings ; Photovoltaic cells ; Refractivity ; Scanning electron microscopy ; Silica ; Sol-gel processes ; Solar cells ; Tantalum ; Tantalum oxides ; Thin films ; Vanadium ; Vanadium oxides ; Xerogels</subject><ispartof>Coatings (Basel), 2022-11, Vol.12 (11), p.1678</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3</citedby><cites>FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3</cites><orcidid>0000-0002-5732-5987 ; 0000-0001-9774-8522 ; 0000-0003-2294-4371 ; 0000-0003-3430-9578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748277862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748277862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Khoroshko, Liudmila</creatorcontrib><creatorcontrib>Baglov, Aleksey</creatorcontrib><creatorcontrib>Orekhovskaya, Taisa</creatorcontrib><creatorcontrib>Trukhanov, Sergei</creatorcontrib><creatorcontrib>Tishkevich, Daria</creatorcontrib><creatorcontrib>Trukhanov, Alex</creatorcontrib><creatorcontrib>Raichenok, Tamara</creatorcontrib><creatorcontrib>Kopots, Anatoly</creatorcontrib><title>Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates</title><title>Coatings (Basel)</title><description>Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological and optical properties of the obtained structures were investigated experimentally by scanning electron microscopy and transmission spectroscopy. Obtained oxide coatings are quasi-ordered arrays of vertical (aluminum oxide/tantalum oxide, aluminum oxide/vanadium oxide, and aluminum oxide obtained in the oxalic electrolyte) or non-ordered tree-like (aluminum oxide obtained in the sulfuric–oxalic electrolyte) pores depending on the initial film metal and anodizing technology. The light transmission in the range of 750–1200 nm is up to 60% for aluminum oxide/tantalum oxide/glass (annealed) and quasi-ordered aluminum oxide/glass structures, and around 40% for aluminum oxide/tantalum oxide/glass (not annealed) and aluminum oxide/vanadium oxide. Non-ordered aluminum oxide is characterized by low transmission (no more than 8%) but has a developed surface and may be of interest for the formation of films with poor adhesion on smooth substrates, for example, photocatalytic active xerogels. The refractive indices of dispersion of the obtained layers were calculated from the transmission spectra by the envelope method. The dispersion of the refractive indices of the obtained oxide films is insignificant in a wide range of wavelengths, and the deviation from the average value is assumed to be observed near the intrinsic absorption edges of the films. The glasses with proposed semi-transparent nanostructured oxide layers are promising substrate structures for subsequent sol–gel coating layers used in photocatalytic purification systems or up-conversion modules of tandem silica solar cells with forward and reverse illumination.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Anodizing</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Dielectric films</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Experiments</subject><subject>Glass substrates</subject><subject>Light</subject><subject>Light transmission</subject><subject>Metals</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Photovoltaic cells</subject><subject>Refractivity</subject><subject>Scanning electron microscopy</subject><subject>Silica</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Thin films</subject><subject>Vanadium</subject><subject>Vanadium oxides</subject><subject>Xerogels</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUU1LAzEQXUTBUnv3GPDcmo_dzeZYSqtCpYLV65JNZtuUbbImqWB_van1IM4MzDC895jHZNktwRPGBL5XTkZjN4FQQkjJq4tsQDEX4zIn9PLPfJ2NQtjhFIKwiohBdlz10SjZoRfvevDRQECuRe-y-wT0DFF2AS0OVkXjbEKtt8aihen2Aa2aKI0FjZovNO9ARe_UFvY_YlPrtDnKEwmlWntpQy892IheD02IXkYIN9lVm-Rh9NuH2dtivp49jperh6fZdDlWrKBxLNuywopinQNXCgpVSSCy4VRQKpTAjOIcF0C1LtucMsxyKstWa1EyTkrdsGF2d9btvfs4QIj1zh18chNqyvOKcl6VNKEmZ9RGdlAb27p0pUqpT56chdak_ZTnRS6qgvNEwGeC8i4ED23de7OX_qsmuD59pf7_FfYNn4WDMQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Khoroshko, Liudmila</creator><creator>Baglov, Aleksey</creator><creator>Orekhovskaya, Taisa</creator><creator>Trukhanov, Sergei</creator><creator>Tishkevich, Daria</creator><creator>Trukhanov, Alex</creator><creator>Raichenok, Tamara</creator><creator>Kopots, Anatoly</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5732-5987</orcidid><orcidid>https://orcid.org/0000-0001-9774-8522</orcidid><orcidid>https://orcid.org/0000-0003-2294-4371</orcidid><orcidid>https://orcid.org/0000-0003-3430-9578</orcidid></search><sort><creationdate>20221101</creationdate><title>Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates</title><author>Khoroshko, Liudmila ; Baglov, Aleksey ; Orekhovskaya, Taisa ; Trukhanov, Sergei ; Tishkevich, Daria ; Trukhanov, Alex ; Raichenok, Tamara ; Kopots, Anatoly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Anodizing</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Dielectric films</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Experiments</topic><topic>Glass substrates</topic><topic>Light</topic><topic>Light transmission</topic><topic>Metals</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Photovoltaic cells</topic><topic>Refractivity</topic><topic>Scanning electron microscopy</topic><topic>Silica</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Thin films</topic><topic>Vanadium</topic><topic>Vanadium oxides</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoroshko, Liudmila</creatorcontrib><creatorcontrib>Baglov, Aleksey</creatorcontrib><creatorcontrib>Orekhovskaya, Taisa</creatorcontrib><creatorcontrib>Trukhanov, Sergei</creatorcontrib><creatorcontrib>Tishkevich, Daria</creatorcontrib><creatorcontrib>Trukhanov, Alex</creatorcontrib><creatorcontrib>Raichenok, Tamara</creatorcontrib><creatorcontrib>Kopots, Anatoly</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoroshko, Liudmila</au><au>Baglov, Aleksey</au><au>Orekhovskaya, Taisa</au><au>Trukhanov, Sergei</au><au>Tishkevich, Daria</au><au>Trukhanov, Alex</au><au>Raichenok, Tamara</au><au>Kopots, Anatoly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>11</issue><spage>1678</spage><pages>1678-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological and optical properties of the obtained structures were investigated experimentally by scanning electron microscopy and transmission spectroscopy. Obtained oxide coatings are quasi-ordered arrays of vertical (aluminum oxide/tantalum oxide, aluminum oxide/vanadium oxide, and aluminum oxide obtained in the oxalic electrolyte) or non-ordered tree-like (aluminum oxide obtained in the sulfuric–oxalic electrolyte) pores depending on the initial film metal and anodizing technology. The light transmission in the range of 750–1200 nm is up to 60% for aluminum oxide/tantalum oxide/glass (annealed) and quasi-ordered aluminum oxide/glass structures, and around 40% for aluminum oxide/tantalum oxide/glass (not annealed) and aluminum oxide/vanadium oxide. Non-ordered aluminum oxide is characterized by low transmission (no more than 8%) but has a developed surface and may be of interest for the formation of films with poor adhesion on smooth substrates, for example, photocatalytic active xerogels. The refractive indices of dispersion of the obtained layers were calculated from the transmission spectra by the envelope method. The dispersion of the refractive indices of the obtained oxide films is insignificant in a wide range of wavelengths, and the deviation from the average value is assumed to be observed near the intrinsic absorption edges of the films. The glasses with proposed semi-transparent nanostructured oxide layers are promising substrate structures for subsequent sol–gel coating layers used in photocatalytic purification systems or up-conversion modules of tandem silica solar cells with forward and reverse illumination.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12111678</doi><orcidid>https://orcid.org/0000-0002-5732-5987</orcidid><orcidid>https://orcid.org/0000-0001-9774-8522</orcidid><orcidid>https://orcid.org/0000-0003-2294-4371</orcidid><orcidid>https://orcid.org/0000-0003-3430-9578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2022-11, Vol.12 (11), p.1678 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2748277862 |
source | Publicly Available Content Database |
subjects | Aluminum oxide Analysis Annealing Anodizing Coatings Composite materials Dielectric films Electrolytes Electrolytic cells Experiments Glass substrates Light Light transmission Metals Nanostructure Nanostructured materials Optical properties Oxidation Oxide coatings Photovoltaic cells Refractivity Scanning electron microscopy Silica Sol-gel processes Solar cells Tantalum Tantalum oxides Thin films Vanadium Vanadium oxides Xerogels |
title | Optical Properties of Valve Metals Functional Thin Films Obtained by Electrochemical Anodization on Transparent Substrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Properties%20of%20Valve%20Metals%20Functional%20Thin%20Films%20Obtained%20by%20Electrochemical%20Anodization%20on%20Transparent%20Substrates&rft.jtitle=Coatings%20(Basel)&rft.au=Khoroshko,%20Liudmila&rft.date=2022-11-01&rft.volume=12&rft.issue=11&rft.spage=1678&rft.pages=1678-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12111678&rft_dat=%3Cgale_proqu%3EA745498577%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-af680c20d4e7cce5c8ae1ab729229c90320405e2dd6f4230342a6fdd963716db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748277862&rft_id=info:pmid/&rft_galeid=A745498577&rfr_iscdi=true |