Loading…

Water-Repellent Coatings on Corrosion Resistance by Femtosecond Laser Processing

Metal corrosion causes huge economic losses and major disasters every year. Inspired by the lotus leaf and nepenthes pitcher, the superhydrophobic surfaces (SHS) and the slippery liquid-infused porous surfaces (SLIPS) were produced as a potential strategy to prevent metal corrosion. However, how to...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2022-11, Vol.12 (11), p.1736
Main Authors: Zhao, Zexu, Luo, Guoyun, Cheng, Manping, Song, Lijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal corrosion causes huge economic losses and major disasters every year. Inspired by the lotus leaf and nepenthes pitcher, the superhydrophobic surfaces (SHS) and the slippery liquid-infused porous surfaces (SLIPS) were produced as a potential strategy to prevent metal corrosion. However, how to prepare stable water-repellent coatings that can prevent the intrusion of corrosive ions remains to investigate. In this work, we first fabricated a micro/nano hierarchical structure on the aluminum surface by femtosecond laser processing. Then, the SHS was prepared on the above structure by fluorosilane modification. Finally, the SLIPS was fabricated on the SHS by coating lubricant. The morphology and wettability of the fabricated samples were evaluated by scanning electron microscopy and contact angle measurements. Furthermore, the corrosion resistance properties of SHS and SLIPS in simulated seawater were characterized by electrochemical measurements. From the comparison of the electrochemical parameters of different immersion times, both water-repellent coatings are effective in protecting the aluminum alloy from corrosion in simulated seawater due to reduced contact area between the metal substrate and corrosive solution. In comparison with the SHS, the SLIPS has a corrosion inhibition efficiency of up to 99.95% and it maintains long-term stability in the corrosive solution. This work also provides a promising method for the water-repellent coatings by femtosecond laser processing for metal corrosion prevention in practical industrial applications.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12111736