Loading…

Isomorphism and Mutual Transformations of S-Bearing Components in Feldspathoids with Microporous Structures

The isomorphism of S-bearing feldspathoids belonging to the cancrinite, sodalite, tugtupite, vladimirivanovite, bystrite, marinellite and scapolite structure types has been investigated using a multimethodical approach based on infrared, Raman and electron spin resonance (ESR), as well as ultraviole...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2022-11, Vol.12 (11), p.1456
Main Authors: Chukanov, Nikita, Shchipalkina, Nadezhda, Shendrik, Roman, Vigasina, Marina, Tauson, Vladimir, Lipko, Sergey, Varlamov, Dmitry, Shcherbakov, Vasiliy, Sapozhnikov, Anatoly, Kasatkin, Anatoly, Zubkova, Natalia, Pekov, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The isomorphism of S-bearing feldspathoids belonging to the cancrinite, sodalite, tugtupite, vladimirivanovite, bystrite, marinellite and scapolite structure types has been investigated using a multimethodical approach based on infrared, Raman and electron spin resonance (ESR), as well as ultraviolet, visible and near infrared (UV–Vis–near IR) absorption spectroscopy methods and involving chemical and X-ray diffraction data. Sapozhnikovite Na8(Al6Si6O24)(HS)2 and sulfite and thiosulfate analogues of cancrinite are synthesized hydrothermally and characterized by means of electron microprobe analyses, powder X-ray diffraction and Raman spectroscopy. The possibility of the incorporation of significant amounts of SO42−, S4 and SO32− in the crystal structures of cancrisilite, sulfhydrylbystrite and marinellite, respectively, has been established for the first time. Thermal conversions of S-bearing groups in the synthetic sulfite cancrinite and sapozhnikovite analogues as well as natural vladinirivanovite and S4-bearing haüyne under oxidizing and reducing conditions have been studied using the multimethodical approach. The SO42− and S2− anions and the S3•– radical anion are the most stable S-bearing species under high-temperature conditions (in the range of 700–800 °C); their ratio in the heated samples is determined by the redox conditions and charge-balance requirement. The HS− and S52− anions are stable only under highly reducing conditions.
ISSN:2075-163X
2075-163X
DOI:10.3390/min12111456