Loading…
Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder
Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement erro...
Saved in:
Published in: | Journal of the American Statistical Association 1998-06, Vol.93 (442), p.494 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 442 |
container_start_page | 494 |
container_title | Journal of the American Statistical Association |
container_volume | 93 |
creator | Marais, M Laurentius Wecker, William E Waternaux, Christine Petkova, Eva |
description | Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_274840955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30186018</sourcerecordid><originalsourceid>FETCH-proquest_journals_2748409553</originalsourceid><addsrcrecordid>eNqNkE1PhDAQhtFoIuvHb5h4J8IuCOuVaPSmZg_eNl0YliG0xWlx9d87ZI16017adN4-75MeBmGSLfJonqcvR0EYJ9fzKEmz5Ukwc66LZeVFER5clJYZK09mC41lsJq8xzp6U0xq06MDZWrQqNzIqNH4CJkltyHlgAwwbhmdI2tgR76VNKhh6KlSfrrzFnyLgE0jHWAb6FHVIIOHJ7iC0uoJeQOPbKVLuz1jdJONGt-pJ8UfUiNm-htY7Y1_68KP7q5FA-g8TQ8E83e9nJ6xs2Rq5LPguFG9w_Ov_TS4vLtdlffRwPZ1FOy6syMbGa3lY4s0XmbZ4l-hT2HVhLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274840955</pqid></control><display><type>article</type><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Taylor and Francis Science and Technology Collection</source><creator>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</creator><creatorcontrib>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</creatorcontrib><description>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis Ltd</publisher><subject>Bias ; Intelligence ; Regression analysis ; Statistics</subject><ispartof>Journal of the American Statistical Association, 1998-06, Vol.93 (442), p.494</ispartof><rights>Copyright American Statistical Association Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/274840955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,33223,36060,44363</link.rule.ids></links><search><creatorcontrib>Marais, M Laurentius</creatorcontrib><creatorcontrib>Wecker, William E</creatorcontrib><creatorcontrib>Waternaux, Christine</creatorcontrib><creatorcontrib>Petkova, Eva</creatorcontrib><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><title>Journal of the American Statistical Association</title><description>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</description><subject>Bias</subject><subject>Intelligence</subject><subject>Regression analysis</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNqNkE1PhDAQhtFoIuvHb5h4J8IuCOuVaPSmZg_eNl0YliG0xWlx9d87ZI16017adN4-75MeBmGSLfJonqcvR0EYJ9fzKEmz5Ukwc66LZeVFER5clJYZK09mC41lsJq8xzp6U0xq06MDZWrQqNzIqNH4CJkltyHlgAwwbhmdI2tgR76VNKhh6KlSfrrzFnyLgE0jHWAb6FHVIIOHJ7iC0uoJeQOPbKVLuz1jdJONGt-pJ8UfUiNm-htY7Y1_68KP7q5FA-g8TQ8E83e9nJ6xs2Rq5LPguFG9w_Ov_TS4vLtdlffRwPZ1FOy6syMbGa3lY4s0XmbZ4l-hT2HVhLM</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Marais, M Laurentius</creator><creator>Wecker, William E</creator><creator>Waternaux, Christine</creator><creator>Petkova, Eva</creator><general>Taylor & Francis Ltd</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19980601</creationdate><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><author>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2748409553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bias</topic><topic>Intelligence</topic><topic>Regression analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marais, M Laurentius</creatorcontrib><creatorcontrib>Wecker, William E</creatorcontrib><creatorcontrib>Waternaux, Christine</creatorcontrib><creatorcontrib>Petkova, Eva</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marais, M Laurentius</au><au>Wecker, William E</au><au>Waternaux, Christine</au><au>Petkova, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>93</volume><issue>442</issue><spage>494</spage><pages>494-</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</abstract><cop>Alexandria</cop><pub>Taylor & Francis Ltd</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1998-06, Vol.93 (442), p.494 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_274840955 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Taylor and Francis Science and Technology Collection |
subjects | Bias Intelligence Regression analysis Statistics |
title | Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20for%20omitted-variables%20and%20measurement-error%20bias%20in%20regression%20with%20an%20application%20to%20the%20effect%20of%20lead%20on%20IQ%20/%20Comment:%20Problems%20with%20using%20auxiliary%20information%20to%20correct%20for%20omitted%20variables%20when%20estimating%20the%20effect%20of%20lead%20on%20IQ%20/%20Comment%20/%20Rejoinder&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Marais,%20M%20Laurentius&rft.date=1998-06-01&rft.volume=93&rft.issue=442&rft.spage=494&rft.pages=494-&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/&rft_dat=%3Cproquest%3E30186018%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_2748409553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=274840955&rft_id=info:pmid/&rfr_iscdi=true |