Loading…

Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder

Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement erro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 1998-06, Vol.93 (442), p.494
Main Authors: Marais, M Laurentius, Wecker, William E, Waternaux, Christine, Petkova, Eva
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 442
container_start_page 494
container_title Journal of the American Statistical Association
container_volume 93
creator Marais, M Laurentius
Wecker, William E
Waternaux, Christine
Petkova, Eva
description Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_274840955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30186018</sourcerecordid><originalsourceid>FETCH-proquest_journals_2748409553</originalsourceid><addsrcrecordid>eNqNkE1PhDAQhtFoIuvHb5h4J8IuCOuVaPSmZg_eNl0YliG0xWlx9d87ZI16017adN4-75MeBmGSLfJonqcvR0EYJ9fzKEmz5Ukwc66LZeVFER5clJYZK09mC41lsJq8xzp6U0xq06MDZWrQqNzIqNH4CJkltyHlgAwwbhmdI2tgR76VNKhh6KlSfrrzFnyLgE0jHWAb6FHVIIOHJ7iC0uoJeQOPbKVLuz1jdJONGt-pJ8UfUiNm-htY7Y1_68KP7q5FA-g8TQ8E83e9nJ6xs2Rq5LPguFG9w_Ov_TS4vLtdlffRwPZ1FOy6syMbGa3lY4s0XmbZ4l-hT2HVhLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274840955</pqid></control><display><type>article</type><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Taylor and Francis Science and Technology Collection</source><creator>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</creator><creatorcontrib>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</creatorcontrib><description>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis Ltd</publisher><subject>Bias ; Intelligence ; Regression analysis ; Statistics</subject><ispartof>Journal of the American Statistical Association, 1998-06, Vol.93 (442), p.494</ispartof><rights>Copyright American Statistical Association Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/274840955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,33223,36060,44363</link.rule.ids></links><search><creatorcontrib>Marais, M Laurentius</creatorcontrib><creatorcontrib>Wecker, William E</creatorcontrib><creatorcontrib>Waternaux, Christine</creatorcontrib><creatorcontrib>Petkova, Eva</creatorcontrib><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><title>Journal of the American Statistical Association</title><description>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</description><subject>Bias</subject><subject>Intelligence</subject><subject>Regression analysis</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNqNkE1PhDAQhtFoIuvHb5h4J8IuCOuVaPSmZg_eNl0YliG0xWlx9d87ZI16017adN4-75MeBmGSLfJonqcvR0EYJ9fzKEmz5Ukwc66LZeVFER5clJYZK09mC41lsJq8xzp6U0xq06MDZWrQqNzIqNH4CJkltyHlgAwwbhmdI2tgR76VNKhh6KlSfrrzFnyLgE0jHWAb6FHVIIOHJ7iC0uoJeQOPbKVLuz1jdJONGt-pJ8UfUiNm-htY7Y1_68KP7q5FA-g8TQ8E83e9nJ6xs2Rq5LPguFG9w_Ov_TS4vLtdlffRwPZ1FOy6syMbGa3lY4s0XmbZ4l-hT2HVhLM</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Marais, M Laurentius</creator><creator>Wecker, William E</creator><creator>Waternaux, Christine</creator><creator>Petkova, Eva</creator><general>Taylor &amp; Francis Ltd</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19980601</creationdate><title>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</title><author>Marais, M Laurentius ; Wecker, William E ; Waternaux, Christine ; Petkova, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2748409553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bias</topic><topic>Intelligence</topic><topic>Regression analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marais, M Laurentius</creatorcontrib><creatorcontrib>Wecker, William E</creatorcontrib><creatorcontrib>Waternaux, Christine</creatorcontrib><creatorcontrib>Petkova, Eva</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marais, M Laurentius</au><au>Wecker, William E</au><au>Waternaux, Christine</au><au>Petkova, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>93</volume><issue>442</issue><spage>494</spage><pages>494-</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Ordinary least squares (OLS) regression estimates are biased, in general, when relevant variables are omitted from the regression equation or when included variables are measured with error. The errors-in-variables bias can be corrected using auxiliary information about unobservable measurement errors. In this article we demonstrate how auxiliary information can also be used to correct for omitted-variables bias. We illustrate our methods with an application to four published studies of the effect on IQ of childhood exposure to lead.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis Ltd</pub></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1998-06, Vol.93 (442), p.494
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_274840955
source International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Taylor and Francis Science and Technology Collection
subjects Bias
Intelligence
Regression analysis
Statistics
title Correcting for omitted-variables and measurement-error bias in regression with an application to the effect of lead on IQ / Comment: Problems with using auxiliary information to correct for omitted variables when estimating the effect of lead on IQ / Comment / Rejoinder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20for%20omitted-variables%20and%20measurement-error%20bias%20in%20regression%20with%20an%20application%20to%20the%20effect%20of%20lead%20on%20IQ%20/%20Comment:%20Problems%20with%20using%20auxiliary%20information%20to%20correct%20for%20omitted%20variables%20when%20estimating%20the%20effect%20of%20lead%20on%20IQ%20/%20Comment%20/%20Rejoinder&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Marais,%20M%20Laurentius&rft.date=1998-06-01&rft.volume=93&rft.issue=442&rft.spage=494&rft.pages=494-&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/&rft_dat=%3Cproquest%3E30186018%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_2748409553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=274840955&rft_id=info:pmid/&rfr_iscdi=true