Loading…
Estimation of the Mean Trace Length of Discontinuities in an Underground Drift Using Laser Scanning Point Cloud Data
In the drifts of underground metal mines, the extraction of rock mass discontinuity characteristics from point cloud models generated with laser scanning has become the main approach. However, the exposure of discontinuities is restricted in drifts, and the size of discontinuities cannot be measured...
Saved in:
Published in: | Sustainability 2022-12, Vol.14 (23), p.15650 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the drifts of underground metal mines, the extraction of rock mass discontinuity characteristics from point cloud models generated with laser scanning has become the main approach. However, the exposure of discontinuities is restricted in drifts, and the size of discontinuities cannot be measured directly. Therefore, it is necessary to use a reasonable sampling tool to estimate the mean trace length of the discontinuities that are mapped in the point cloud model. In this paper, a method to estimate the mean trace length of discontinuities using a three-dimensional (3D) model of a drift (3DM) is proposed. Through the point cloud data of a drift obtained using 3D laser scanning, the information on discontinuities in the surrounding rock was extracted; then, the mean trace length was estimated using 3DEC to set sampling windows on the roof and sidewall in the 3DM. By analyzing the difference between the circular sampling window and the rectangular sampling window using simulated cases, the estimation results showed that the mean trace length obtained using circular measuring windows in the 3DM was closer to the true trace length. Finally, the method was used in a practical engineering case in Jianshan Iron Mine, Panzhihua, Sichuan, China. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su142315650 |