Loading…

Efficient progressive algorithm for light scattering of a multilayered concentric nanoparticle

An efficient progressive methodology is presented for the computation of multi-scattering of electromagnetic waves by a multilayered concentric nanoparticle. Instead of solving a large set of system equations as reported in other works, the proposed approach utilizes a progressive algorithm which co...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2022-12, Vol.61 (35), p.10556
Main Authors: Li, Rongheng, Li, Ben Q
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficient progressive methodology is presented for the computation of multi-scattering of electromagnetic waves by a multilayered concentric nanoparticle. Instead of solving a large set of system equations as reported in other works, the proposed approach utilizes a progressive algorithm which considers two adjacent shell layers at a time, marching progressively from the innermost to the outmost layer, and requires only multiplication of 4Ă—4 matrices. The progressive algorithm yields the analytical expression for the scattering parameter of the concentric particle. Moreover, the progressive algorithm allows the scattering coefficients of a specific internal layer to be computed selectively, rather than having to calculate those of all layers of the entire particle as required by other algorithms. We show that the presented progressive method has equivalent accuracy to the well-known recursive algorithm, but it is more attractive due to its lower complexity in implementation. It is shown that light scattering of both a single solid sphere and two-layered concentric shell are special cases of the proposed methodology. Case study demonstrates that the presented methodology is useful in assisting the design of a multilayered core/shell structure with maximum forward scattering feature, indicating it is applicable to the exploration of optical phenomena of nanoparticles with numerous layers. Moreover, the present progressive algorithm is further extended to the electromagnetic scattering by an eccentric multilayered particle with inner cores displaced along a line defined by the centers of the spheres, which provides extra freedoms for the design of optical core shell spherical particles.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.473471