Loading…
Automatic rock classification of LIBS combined with 1DCNN based on an improved Bayesian optimization
To achieve automated rock classification and improve classification accuracy, this work discusses an investigation of the combination of laser-induced breakdown spectroscopy (LIBS) and the use of one-dimensional convolutional neural networks (1DCNNs). As a result, in this paper, an improved Bayesian...
Saved in:
Published in: | Applied optics (2004) 2022-12, Vol.61 (35), p.10603 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To achieve automated rock classification and improve classification accuracy, this work discusses an investigation of the combination of laser-induced breakdown spectroscopy (LIBS) and the use of one-dimensional convolutional neural networks (1DCNNs). As a result, in this paper, an improved Bayesian optimization (BO) algorithm has been proposed where the algorithm has been applied to automatic rock classification, using LIBS and 1DCNN to improve the efficiency of rock structure analysis being carried out. Compared to other algorithms, the improved BO method discussed here allows for a reduction of the modeling time by about 65% and can achieve 99.33% and 99.00% for the validation and test sets of 1DCNN. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.472220 |