Loading…
Nonsymmorphic P21/m‐MoTe2: Novel 2D Topological Materials
Nonsymmorphic symmetries play a significant role in the emergence of topological nontrivial phases in some 2D materials. Herein, a new 2D material P21/m‐MoTe2 with nontrivial topological properties and nonsymmorphic symmetries is proposed. With the help of first‐principles calculations, it is found...
Saved in:
Published in: | Physica status solidi. PSS-RRL. Rapid research letters 2022-11, Vol.16 (11), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonsymmorphic symmetries play a significant role in the emergence of topological nontrivial phases in some 2D materials. Herein, a new 2D material P21/m‐MoTe2 with nontrivial topological properties and nonsymmorphic symmetries is proposed. With the help of first‐principles calculations, it is found that it is dynamically stable, and has relatively high energetic stability. When spin–orbit coupling (SOC) is ignored, this material is a semimetal with two intersects appearing on the high‐symmetry line Γ–Y. Detailed symmetry analysis reveal that they are protected by the screw operator C˜2y. After SOC is turned on, it turns into a topological insulator with a global bandgap of 94 meV. The large gap ensures that the topological nontrivial phase is robust to an external perturbation. The discovery of nonsymmorphic P21/m‐MoTe2 expands the family of transition metal dichalcogenides and provides a new platform to study topological phases in 2D nonsymmorphic materials.
Herein, a new topological material P21/m‐MoTe2 with nonsymmorphic symmetry is proposed in transition metal dichalcogenides. This monolayer crystal possesses a screw rotation symmetry C˜2y‐protected nontrivial Dirac cone when the spin–orbit coupling is ignored. Spin–orbit coupling turns P21/m‐MoTe2 into a nontrivial topological insulator with a global bandgap of 94 meV, ensuring that the states are robust against external perturbation. |
---|---|
ISSN: | 1862-6254 1862-6270 |
DOI: | 10.1002/pssr.202200188 |