Loading…
Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control
In this article, a data‐driven difference‐inversion‐based iterative control (DDD‐IIC) approach is proposed to compensate for both nonlinear hysteresis and dynamics of Hammerstein systems. Simultaneous hysteresis‐dynamics compensation is needed in control of Hammerstein systems such as smart actuator...
Saved in:
Published in: | International journal of robust and nonlinear control 2023-01, Vol.33 (1), p.489-506 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3 |
container_end_page | 506 |
container_issue | 1 |
container_start_page | 489 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Wang, Zhihua Zou, Qingze |
description | In this article, a data‐driven difference‐inversion‐based iterative control (DDD‐IIC) approach is proposed to compensate for both nonlinear hysteresis and dynamics of Hammerstein systems. Simultaneous hysteresis‐dynamics compensation is needed in control of Hammerstein systems such as smart actuators, where effects of hysteresis and dynamics coexist and become pronounced in high‐speed, large‐range output tracking. Challenges, however, arises as hysteresis modeling, as needed in many existing control methods, can be complicated and prone to uncertainties, and the hysteresis and the dynamics are coupled and tend to change due to the variations of the system conditions (e.g., the aging of smart actuators). The proposed DDD‐IIC technique aims to achieve simultaneous hysteresis‐dynamics compensation with no need for modeling hysteresis and/or dynamics, and with both precision tracking and good robustness against hysteresis/dynamics variations. The convergence of the DDD‐IIC algorithm in the presence of random output disturbance/noise is analyzed. It is shown that when the noise is negligible, exact tracking is achieved and the size of hysteresis accounted is given by the Golden ratio. The proposed DDD‐IIC method is demonstrated via experiments of high‐speed large‐range output tracking on two different types of smart actuators with symmetric and asymmetric hysteresis behavior, respectively. |
doi_str_mv | 10.1002/rnc.6435 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754279914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754279914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhoMoWKvgIwTcuDB1bkk67qR4g6LgZR2mMyfp1GRSZyaV7Ny49xl9EifWratzDv_Hd-CPomOMJhghcm6NnGSMpjvRCCPOE0wo3x12xpMpJ3Q_OnBuhVDICBtFn0-66WovDLSdi5e982DBaff98aV6IxotXSzbZg3GCa9bE2sTL3W1DLlbA6izuBa2gnBaYSqIvRUrkL61_bDKV22qi_gyVsKLQWn1BoIjPAm2DQS18batD6O9UtQOjv7mOHq5vnqe3Sbzh5u72eU8kYTTNMlZyhTkPKWIZzhXosR4SgSnAFNKmKSZYhmQBcqUFMDzLE1zpRgHSXlJFws6jk623rVt3zpwvli1nTXhZUHylJGcc8wCdbqlpG2ds1AWa6sbYfsCo2IouQglF0PJAU226Luuof-XKx7vZ7_8D3yehIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754279914</pqid></control><display><type>article</type><title>Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Zhihua ; Zou, Qingze</creator><creatorcontrib>Wang, Zhihua ; Zou, Qingze</creatorcontrib><description>In this article, a data‐driven difference‐inversion‐based iterative control (DDD‐IIC) approach is proposed to compensate for both nonlinear hysteresis and dynamics of Hammerstein systems. Simultaneous hysteresis‐dynamics compensation is needed in control of Hammerstein systems such as smart actuators, where effects of hysteresis and dynamics coexist and become pronounced in high‐speed, large‐range output tracking. Challenges, however, arises as hysteresis modeling, as needed in many existing control methods, can be complicated and prone to uncertainties, and the hysteresis and the dynamics are coupled and tend to change due to the variations of the system conditions (e.g., the aging of smart actuators). The proposed DDD‐IIC technique aims to achieve simultaneous hysteresis‐dynamics compensation with no need for modeling hysteresis and/or dynamics, and with both precision tracking and good robustness against hysteresis/dynamics variations. The convergence of the DDD‐IIC algorithm in the presence of random output disturbance/noise is analyzed. It is shown that when the noise is negligible, exact tracking is achieved and the size of hysteresis accounted is given by the Golden ratio. The proposed DDD‐IIC method is demonstrated via experiments of high‐speed large‐range output tracking on two different types of smart actuators with symmetric and asymmetric hysteresis behavior, respectively.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6435</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Algorithms ; Compensation ; Control methods ; data‐driven ; hysteresis and dynamics compensation ; Hysteresis models ; iterative learning control ; Iterative methods ; Modelling ; nanopositioning control ; Nonlinear dynamics ; Tracking</subject><ispartof>International journal of robust and nonlinear control, 2023-01, Vol.33 (1), p.489-506</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3</citedby><cites>FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3</cites><orcidid>0000-0001-5183-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><title>Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control</title><title>International journal of robust and nonlinear control</title><description>In this article, a data‐driven difference‐inversion‐based iterative control (DDD‐IIC) approach is proposed to compensate for both nonlinear hysteresis and dynamics of Hammerstein systems. Simultaneous hysteresis‐dynamics compensation is needed in control of Hammerstein systems such as smart actuators, where effects of hysteresis and dynamics coexist and become pronounced in high‐speed, large‐range output tracking. Challenges, however, arises as hysteresis modeling, as needed in many existing control methods, can be complicated and prone to uncertainties, and the hysteresis and the dynamics are coupled and tend to change due to the variations of the system conditions (e.g., the aging of smart actuators). The proposed DDD‐IIC technique aims to achieve simultaneous hysteresis‐dynamics compensation with no need for modeling hysteresis and/or dynamics, and with both precision tracking and good robustness against hysteresis/dynamics variations. The convergence of the DDD‐IIC algorithm in the presence of random output disturbance/noise is analyzed. It is shown that when the noise is negligible, exact tracking is achieved and the size of hysteresis accounted is given by the Golden ratio. The proposed DDD‐IIC method is demonstrated via experiments of high‐speed large‐range output tracking on two different types of smart actuators with symmetric and asymmetric hysteresis behavior, respectively.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Compensation</subject><subject>Control methods</subject><subject>data‐driven</subject><subject>hysteresis and dynamics compensation</subject><subject>Hysteresis models</subject><subject>iterative learning control</subject><subject>Iterative methods</subject><subject>Modelling</subject><subject>nanopositioning control</subject><subject>Nonlinear dynamics</subject><subject>Tracking</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMtKw0AUhoMoWKvgIwTcuDB1bkk67qR4g6LgZR2mMyfp1GRSZyaV7Ny49xl9EifWratzDv_Hd-CPomOMJhghcm6NnGSMpjvRCCPOE0wo3x12xpMpJ3Q_OnBuhVDICBtFn0-66WovDLSdi5e982DBaff98aV6IxotXSzbZg3GCa9bE2sTL3W1DLlbA6izuBa2gnBaYSqIvRUrkL61_bDKV22qi_gyVsKLQWn1BoIjPAm2DQS18batD6O9UtQOjv7mOHq5vnqe3Sbzh5u72eU8kYTTNMlZyhTkPKWIZzhXosR4SgSnAFNKmKSZYhmQBcqUFMDzLE1zpRgHSXlJFws6jk623rVt3zpwvli1nTXhZUHylJGcc8wCdbqlpG2ds1AWa6sbYfsCo2IouQglF0PJAU226Luuof-XKx7vZ7_8D3yehIs</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Wang, Zhihua</creator><creator>Zou, Qingze</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid></search><sort><creationdate>20230110</creationdate><title>Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control</title><author>Wang, Zhihua ; Zou, Qingze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Compensation</topic><topic>Control methods</topic><topic>data‐driven</topic><topic>hysteresis and dynamics compensation</topic><topic>Hysteresis models</topic><topic>iterative learning control</topic><topic>Iterative methods</topic><topic>Modelling</topic><topic>nanopositioning control</topic><topic>Nonlinear dynamics</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhihua</au><au>Zou, Qingze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-01-10</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>489</spage><epage>506</epage><pages>489-506</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, a data‐driven difference‐inversion‐based iterative control (DDD‐IIC) approach is proposed to compensate for both nonlinear hysteresis and dynamics of Hammerstein systems. Simultaneous hysteresis‐dynamics compensation is needed in control of Hammerstein systems such as smart actuators, where effects of hysteresis and dynamics coexist and become pronounced in high‐speed, large‐range output tracking. Challenges, however, arises as hysteresis modeling, as needed in many existing control methods, can be complicated and prone to uncertainties, and the hysteresis and the dynamics are coupled and tend to change due to the variations of the system conditions (e.g., the aging of smart actuators). The proposed DDD‐IIC technique aims to achieve simultaneous hysteresis‐dynamics compensation with no need for modeling hysteresis and/or dynamics, and with both precision tracking and good robustness against hysteresis/dynamics variations. The convergence of the DDD‐IIC algorithm in the presence of random output disturbance/noise is analyzed. It is shown that when the noise is negligible, exact tracking is achieved and the size of hysteresis accounted is given by the Golden ratio. The proposed DDD‐IIC method is demonstrated via experiments of high‐speed large‐range output tracking on two different types of smart actuators with symmetric and asymmetric hysteresis behavior, respectively.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6435</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-01, Vol.33 (1), p.489-506 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2754279914 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Actuators Algorithms Compensation Control methods data‐driven hysteresis and dynamics compensation Hysteresis models iterative learning control Iterative methods Modelling nanopositioning control Nonlinear dynamics Tracking |
title | Simultaneous hysteresis‐dynamics compensation in high‐speed, large‐range trajectory tracking: A data‐driven iterative control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20hysteresis%E2%80%90dynamics%20compensation%20in%20high%E2%80%90speed,%20large%E2%80%90range%20trajectory%20tracking:%20A%20data%E2%80%90driven%20iterative%20control&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wang,%20Zhihua&rft.date=2023-01-10&rft.volume=33&rft.issue=1&rft.spage=489&rft.epage=506&rft.pages=489-506&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6435&rft_dat=%3Cproquest_cross%3E2754279914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2935-7454de795309617daf1182a93ee8324c36d46e2b06dcae976557dd49ec39f3bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754279914&rft_id=info:pmid/&rfr_iscdi=true |