Loading…

Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults

The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and d...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-12, Vol.12 (1), p.21859
Main Authors: Ren, Yuan, Wang, Yan, Liang, Ruifeng, Hao, Binwei, Wang, Hongxia, Yuan, Jianwei, Wang, Lin, Guo, Zhizun, Zhang, Jianwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p157t-9dae10d9f3a5cd917651c0d0af643b25b66a2ada97c09daf698220f474be98a13
container_end_page
container_issue 1
container_start_page 21859
container_title Scientific reports
container_volume 12
creator Ren, Yuan
Wang, Yan
Liang, Ruifeng
Hao, Binwei
Wang, Hongxia
Yuan, Jianwei
Wang, Lin
Guo, Zhizun
Zhang, Jianwei
description The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and divided them into MPP and non-MPP groups according to whether they were infected with MP. Univariate and multivariate logistic regression analyses were used to screen independent predictors of MPP in adults and to developed a nomogram model. Receiver operating characteristic (ROC) curve, calibration curve, concordance index (C-index), and decision curve analysis (DCA) were used for the validation of the evaluation model. Finally, the nomogram was further evaluated by internal verification. Age, body temperature, dry cough, dizziness, CRP and tree-in-bud sign were independent predictors of MPP in adults (P  
doi_str_mv 10.1038/s41598-022-26565-5
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2755190621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755190621</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-9dae10d9f3a5cd917651c0d0af643b25b66a2ada97c09daf698220f474be98a13</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMguKz7BzwFPEfz0aTNUdZPULzoOc42ydKlTWLSLvjv7bqic5k5PMzL-yB0wegVo6K5LhWTuiGUc8KVVJLIE7TgtJKEC87P0KqUHZ1Hcl0xvUAft27v-pgGF0YMweI99J2FsYsBR48BhzjEbYYB-5hxys527diFLX75amPqoQyQgpuGGDpw-O_EXcBgp34s5-jUQ1_c6ncv0fv93dv6kTy_Pjytb55JYrIeibbgGLXaC5Ct1axWkrXUUvCqEhsuN0oBBwu6bunMeqUbzqmv6mrjdANMLNHl8W_K8XNyZTS7OOUwRxpeS8k0VfxAiSNVUp5buPxPMWoOBs3RoJkNmh-DRopv4rBnjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755190621</pqid></control><display><type>article</type><title>Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ren, Yuan ; Wang, Yan ; Liang, Ruifeng ; Hao, Binwei ; Wang, Hongxia ; Yuan, Jianwei ; Wang, Lin ; Guo, Zhizun ; Zhang, Jianwei</creator><creatorcontrib>Ren, Yuan ; Wang, Yan ; Liang, Ruifeng ; Hao, Binwei ; Wang, Hongxia ; Yuan, Jianwei ; Wang, Lin ; Guo, Zhizun ; Zhang, Jianwei</creatorcontrib><description>The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and divided them into MPP and non-MPP groups according to whether they were infected with MP. Univariate and multivariate logistic regression analyses were used to screen independent predictors of MPP in adults and to developed a nomogram model. Receiver operating characteristic (ROC) curve, calibration curve, concordance index (C-index), and decision curve analysis (DCA) were used for the validation of the evaluation model. Finally, the nomogram was further evaluated by internal verification. Age, body temperature, dry cough, dizziness, CRP and tree-in-bud sign were independent predictors of MPP in adults (P  &lt;  0.05 ). The nomogram showed high accuracy with C-index of 0.836 and well-fitted calibration curves in both the training and validation sets. The area under the receiver operating curve (AUROC) was 0.829 (95% CI 0.774–0.883) for the training set and 0.847 (95% CI 0.768–0.925) for the validation set. This nomogram prediction model can accurately predict the risk of MPP occurrence in adults, which helps clinicians identify high-risk patients at an early stage and make drug selection and clinical decisions.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-26565-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308 ; 692/499 ; 692/53 ; 692/699 ; 692/700 ; Body temperature ; Calibration ; Cough ; Humanities and Social Sciences ; multidisciplinary ; Nomograms ; Pneumonia ; Prediction models ; Risk groups ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-12, Vol.12 (1), p.21859</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-9dae10d9f3a5cd917651c0d0af643b25b66a2ada97c09daf698220f474be98a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2755190621/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2755190621?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ren, Yuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liang, Ruifeng</creatorcontrib><creatorcontrib>Hao, Binwei</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Yuan, Jianwei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Guo, Zhizun</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><title>Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and divided them into MPP and non-MPP groups according to whether they were infected with MP. Univariate and multivariate logistic regression analyses were used to screen independent predictors of MPP in adults and to developed a nomogram model. Receiver operating characteristic (ROC) curve, calibration curve, concordance index (C-index), and decision curve analysis (DCA) were used for the validation of the evaluation model. Finally, the nomogram was further evaluated by internal verification. Age, body temperature, dry cough, dizziness, CRP and tree-in-bud sign were independent predictors of MPP in adults (P  &lt;  0.05 ). The nomogram showed high accuracy with C-index of 0.836 and well-fitted calibration curves in both the training and validation sets. The area under the receiver operating curve (AUROC) was 0.829 (95% CI 0.774–0.883) for the training set and 0.847 (95% CI 0.768–0.925) for the validation set. This nomogram prediction model can accurately predict the risk of MPP occurrence in adults, which helps clinicians identify high-risk patients at an early stage and make drug selection and clinical decisions.</description><subject>692/308</subject><subject>692/499</subject><subject>692/53</subject><subject>692/699</subject><subject>692/700</subject><subject>Body temperature</subject><subject>Calibration</subject><subject>Cough</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nomograms</subject><subject>Pneumonia</subject><subject>Prediction models</subject><subject>Risk groups</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFkE1LxDAQhoMguKz7BzwFPEfz0aTNUdZPULzoOc42ydKlTWLSLvjv7bqic5k5PMzL-yB0wegVo6K5LhWTuiGUc8KVVJLIE7TgtJKEC87P0KqUHZ1Hcl0xvUAft27v-pgGF0YMweI99J2FsYsBR48BhzjEbYYB-5hxys527diFLX75amPqoQyQgpuGGDpw-O_EXcBgp34s5-jUQ1_c6ncv0fv93dv6kTy_Pjytb55JYrIeibbgGLXaC5Ct1axWkrXUUvCqEhsuN0oBBwu6bunMeqUbzqmv6mrjdANMLNHl8W_K8XNyZTS7OOUwRxpeS8k0VfxAiSNVUp5buPxPMWoOBs3RoJkNmh-DRopv4rBnjA</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Ren, Yuan</creator><creator>Wang, Yan</creator><creator>Liang, Ruifeng</creator><creator>Hao, Binwei</creator><creator>Wang, Hongxia</creator><creator>Yuan, Jianwei</creator><creator>Wang, Lin</creator><creator>Guo, Zhizun</creator><creator>Zhang, Jianwei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20221217</creationdate><title>Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults</title><author>Ren, Yuan ; Wang, Yan ; Liang, Ruifeng ; Hao, Binwei ; Wang, Hongxia ; Yuan, Jianwei ; Wang, Lin ; Guo, Zhizun ; Zhang, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-9dae10d9f3a5cd917651c0d0af643b25b66a2ada97c09daf698220f474be98a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/308</topic><topic>692/499</topic><topic>692/53</topic><topic>692/699</topic><topic>692/700</topic><topic>Body temperature</topic><topic>Calibration</topic><topic>Cough</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nomograms</topic><topic>Pneumonia</topic><topic>Prediction models</topic><topic>Risk groups</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liang, Ruifeng</creatorcontrib><creatorcontrib>Hao, Binwei</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Yuan, Jianwei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Guo, Zhizun</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><collection>SpringerOpen</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yuan</au><au>Wang, Yan</au><au>Liang, Ruifeng</au><au>Hao, Binwei</au><au>Wang, Hongxia</au><au>Yuan, Jianwei</au><au>Wang, Lin</au><au>Guo, Zhizun</au><au>Zhang, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-12-17</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>21859</spage><pages>21859-</pages><eissn>2045-2322</eissn><abstract>The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and divided them into MPP and non-MPP groups according to whether they were infected with MP. Univariate and multivariate logistic regression analyses were used to screen independent predictors of MPP in adults and to developed a nomogram model. Receiver operating characteristic (ROC) curve, calibration curve, concordance index (C-index), and decision curve analysis (DCA) were used for the validation of the evaluation model. Finally, the nomogram was further evaluated by internal verification. Age, body temperature, dry cough, dizziness, CRP and tree-in-bud sign were independent predictors of MPP in adults (P  &lt;  0.05 ). The nomogram showed high accuracy with C-index of 0.836 and well-fitted calibration curves in both the training and validation sets. The area under the receiver operating curve (AUROC) was 0.829 (95% CI 0.774–0.883) for the training set and 0.847 (95% CI 0.768–0.925) for the validation set. This nomogram prediction model can accurately predict the risk of MPP occurrence in adults, which helps clinicians identify high-risk patients at an early stage and make drug selection and clinical decisions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41598-022-26565-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2022-12, Vol.12 (1), p.21859
issn 2045-2322
language eng
recordid cdi_proquest_journals_2755190621
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/308
692/499
692/53
692/699
692/700
Body temperature
Calibration
Cough
Humanities and Social Sciences
multidisciplinary
Nomograms
Pneumonia
Prediction models
Risk groups
Science
Science (multidisciplinary)
title Development and validation of a nomogram for predicting Mycoplasmapneumoniae pneumonia in adults
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20nomogram%20for%20predicting%20Mycoplasmapneumoniae%20pneumonia%20in%20adults&rft.jtitle=Scientific%20reports&rft.au=Ren,%20Yuan&rft.date=2022-12-17&rft.volume=12&rft.issue=1&rft.spage=21859&rft.pages=21859-&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-26565-5&rft_dat=%3Cproquest_sprin%3E2755190621%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-9dae10d9f3a5cd917651c0d0af643b25b66a2ada97c09daf698220f474be98a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755190621&rft_id=info:pmid/&rfr_iscdi=true