Loading…

mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2

Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 2023-01, Vol.174 (1), p.49-58
Main Authors: FIDELIS, CLAUDEMIR, KOSHLUKOV, PLAMEN
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 58
container_issue 1
container_start_page 49
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 174
creator FIDELIS, CLAUDEMIR
KOSHLUKOV, PLAMEN
description Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.
doi_str_mv 10.1017/S0305004122000123
format article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_2755475014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004122000123</cupid><sourcerecordid>2755475014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c724-a126be5b6b502888d546fdbf3faca21620a088a90dc9e50f491e5dc6cf44bf5e3</originalsourceid><addsrcrecordid>eNplkDtLA0EUhQdRMEZ_gN2AaVfvPHe3lOALAxbGxmaZx53NhDx0ZlKJ_90NESysTvF9nAOHkEsG1wxYffMKAhSAZJwDAOPiiIyY1G3VgJbHZLTH1Z6fkrOcl4MjWgYj8rw2ZWHt1_v3hFZ9Mh49jR43JZaImW4DLQuks4jUrHq0yWQ6eevYhMYNdQuTjCuYYi7RUX5OToJZZbz4zTGZ39_Np4_V7OXhaXo7q1zNZWUY1xaV1VYBb5rGK6mDt0EE4wxnmoOBpjEteNeigiBbhso77YKUNigUY3J1qP1I288d5tItt7u0GRY7XislawVMDpY4WM6sbYq-xz-NQbc_rft3mvgBpHdc5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755475014</pqid></control><display><type>article</type><title>mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2</title><source>Cambridge Journals Online</source><creator>FIDELIS, CLAUDEMIR ; KOSHLUKOV, PLAMEN</creator><creatorcontrib>FIDELIS, CLAUDEMIR ; KOSHLUKOV, PLAMEN</creatorcontrib><description>Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004122000123</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Lie groups ; Polynomials ; Rings (mathematics) ; Variables ; Vector space</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2023-01, Vol.174 (1), p.49-58</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004122000123/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>FIDELIS, CLAUDEMIR</creatorcontrib><creatorcontrib>KOSHLUKOV, PLAMEN</creatorcontrib><title>mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Variables</subject><subject>Vector space</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkDtLA0EUhQdRMEZ_gN2AaVfvPHe3lOALAxbGxmaZx53NhDx0ZlKJ_90NESysTvF9nAOHkEsG1wxYffMKAhSAZJwDAOPiiIyY1G3VgJbHZLTH1Z6fkrOcl4MjWgYj8rw2ZWHt1_v3hFZ9Mh49jR43JZaImW4DLQuks4jUrHq0yWQ6eevYhMYNdQuTjCuYYi7RUX5OToJZZbz4zTGZ39_Np4_V7OXhaXo7q1zNZWUY1xaV1VYBb5rGK6mDt0EE4wxnmoOBpjEteNeigiBbhso77YKUNigUY3J1qP1I288d5tItt7u0GRY7XislawVMDpY4WM6sbYq-xz-NQbc_rft3mvgBpHdc5w</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>FIDELIS, CLAUDEMIR</creator><creator>KOSHLUKOV, PLAMEN</creator><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202301</creationdate><title>mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2</title><author>FIDELIS, CLAUDEMIR ; KOSHLUKOV, PLAMEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c724-a126be5b6b502888d546fdbf3faca21620a088a90dc9e50f491e5dc6cf44bf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Variables</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FIDELIS, CLAUDEMIR</creatorcontrib><creatorcontrib>KOSHLUKOV, PLAMEN</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FIDELIS, CLAUDEMIR</au><au>KOSHLUKOV, PLAMEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2023-01</date><risdate>2023</risdate><volume>174</volume><issue>1</issue><spage>49</spage><epage>58</epage><pages>49-58</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004122000123</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2023-01, Vol.174 (1), p.49-58
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_journals_2755475014
source Cambridge Journals Online
subjects Algebra
Lie groups
Polynomials
Rings (mathematics)
Variables
Vector space
title mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mathbb%7BZ%7D$%20-graded%20identities%20of%20the%20Lie%20algebras%20$U_1$%20in%20characteristic%202&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=FIDELIS,%20CLAUDEMIR&rft.date=2023-01&rft.volume=174&rft.issue=1&rft.spage=49&rft.epage=58&rft.pages=49-58&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004122000123&rft_dat=%3Cproquest_cambr%3E2755475014%3C/proquest_cambr%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c724-a126be5b6b502888d546fdbf3faca21620a088a90dc9e50f491e5dc6cf44bf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755475014&rft_id=info:pmid/&rft_cupid=10_1017_S0305004122000123&rfr_iscdi=true