Loading…

Hollow NiCo@C Nanozyme-Embedded Paper-Based Colorimetric Aptasensor for Highly Sensitive Antibiotic Detection on a Smartphone Platform

Antibiotic residues in the environment and in foods pose a serious threat to ecosystems and human health. Developing sensitive and on-site detection methods is therefore in high demand. In this work, a portable paper-based colorimetric sensor with a smartphone platform with an ultrahigh sensitivity...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-12, Vol.94 (48), p.16768-16777
Main Authors: Zhu, Xu, Tang, Jing, Ouyang, Xilian, Liao, Yibo, Feng, Haopeng, Yu, Jiangfang, Chen, Li, Lu, Yating, Yi, Yuyang, Tang, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antibiotic residues in the environment and in foods pose a serious threat to ecosystems and human health. Developing sensitive and on-site detection methods is therefore in high demand. In this work, a portable paper-based colorimetric sensor with a smartphone platform with an ultrahigh sensitivity has been designed for on-site and quantitative analysis of antibiotic residues based on aptamer-regulated nanozyme activity. The developed excellent peroxidase-like nanozymes, carbon-protected NiCo bimetal oxides with a unique hollow nanocage structure (NiCo@C HCs), could effectively catalyze the oxidation of chromogenic substrates by H2O2. Once bound to a specific aptamer, the enzyme-mimicking activity of NiCo@C HCs is obviously inhibited as a result of the masking of active sites but could be restored via the target-aptamer recognition. Herein, the aptamer-modified NiCo@C HCs are embedded on paper pieces to construct paper-based biochips for visual detection. Meanwhile, a smartphone platform is integrated for the signal readout. Using enrofloxacin (ENR) as an analyte model, the proposed paper-based analysis platform shows a reliable and sensitive detection of ENR with an ultralow detection limit of 0.029 ng/mL. The platform also works well in various real samples. This analysis method is facile in design, showing a great application potential for on-site and mass screening of antibiotic residues in the environment and in foods.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c03603