Loading…
Magnetohydrodynamics nano fluid flows through a vertical porous cylinder
Simulation studies and applications in mathematics continue to evolve as science and computer technology evolution. One of them is Magnetohydrodynamics (MHD) which is closely related to the field of engineering and industry. This study considers velocity and temperature analysis around the lower sta...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2641 |
creator | Widodo, Basuki Mayagrafinda, Isnainatul Adzkiya, Dieky |
description | Simulation studies and applications in mathematics continue to evolve as science and computer technology evolution. One of them is Magnetohydrodynamics (MHD) which is closely related to the field of engineering and industry. This study considers velocity and temperature analysis around the lower stagnation point on magnetohydrodynamics nano fluids through a vertical porous cylinder. Governing equations are derived from dimensional equations, which are mass or continuity equation, momentum equation, and energy equation. Further, the dimensional governing equations are converted to the non-dimensional governing equations. The non-dimensional governing equations are further transformed to similarity equations by introducing stream function. We obtain ordinary differential equation and boundary conditions, and we call mathematical model of the problem. We further solve the mathematical model numerically using finite difference method, i.e. Keller Box scheme or method. For running numerical simulation, we apply two nano fluids, i.e. nano particle Li2O and Fe2O3with water as basic fluid for the nano fluids. The numerical simulation results show that velocity of the nano-fluid increases when parameters of magnetic and porous increase. However, the velocity of the nano fluid increases when the volume fraction and Prandtl number decrease. Further, the temperature of nano fluid increases when the parameter of magnetic, porous, and Prandtl number decrease. However, the temperature of nano fluid increases when the volume fraction increases. |
doi_str_mv | 10.1063/5.0131704 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2755659084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755659084</sourcerecordid><originalsourceid>FETCH-LOGICAL-p984-3e7137bca3a9a2f13933e7318a9ae61aadafccebd72b70fd952e24fea46f7ccb3</originalsourceid><addsrcrecordid>eNotUEtLw0AYXETBWj34DwLehNR9ZpOjFLVCxUsP3pYv-2i2pNm4myj590baywwzDDMwCN0TvCK4YE9ihQkjEvMLtCBCkFwWpLhEC4wrnlPOvq7RTUoHjGklZblAmw_Yd3YIzWRiMFMHR69T1kEXMteO3swYflM2NDGM-yaD7MfGwWtosz7MVsr01PrO2HiLrhy0yd6deYl2ry-79Sbffr69r5-3eV-VPGdWEiZrDQwqoI6wis0WI-UsbUEADDitbW0krSV2phLUUu4s8MJJrWu2RA-n2j6G79GmQR3CGLt5UVEpRCEqXPI59XhKJe0HGHzoVB_9EeKkCFb_RymhzkexP_UVXC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2755659084</pqid></control><display><type>conference_proceeding</type><title>Magnetohydrodynamics nano fluid flows through a vertical porous cylinder</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Widodo, Basuki ; Mayagrafinda, Isnainatul ; Adzkiya, Dieky</creator><contributor>Mufid, Muhammad Syifa’ul ; Adzkiya, Dieky</contributor><creatorcontrib>Widodo, Basuki ; Mayagrafinda, Isnainatul ; Adzkiya, Dieky ; Mufid, Muhammad Syifa’ul ; Adzkiya, Dieky</creatorcontrib><description>Simulation studies and applications in mathematics continue to evolve as science and computer technology evolution. One of them is Magnetohydrodynamics (MHD) which is closely related to the field of engineering and industry. This study considers velocity and temperature analysis around the lower stagnation point on magnetohydrodynamics nano fluids through a vertical porous cylinder. Governing equations are derived from dimensional equations, which are mass or continuity equation, momentum equation, and energy equation. Further, the dimensional governing equations are converted to the non-dimensional governing equations. The non-dimensional governing equations are further transformed to similarity equations by introducing stream function. We obtain ordinary differential equation and boundary conditions, and we call mathematical model of the problem. We further solve the mathematical model numerically using finite difference method, i.e. Keller Box scheme or method. For running numerical simulation, we apply two nano fluids, i.e. nano particle Li2O and Fe2O3with water as basic fluid for the nano fluids. The numerical simulation results show that velocity of the nano-fluid increases when parameters of magnetic and porous increase. However, the velocity of the nano fluid increases when the volume fraction and Prandtl number decrease. Further, the temperature of nano fluid increases when the parameter of magnetic, porous, and Prandtl number decrease. However, the temperature of nano fluid increases when the volume fraction increases.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0131704</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Continuity equation ; Cylinders ; Differential equations ; Finite difference method ; Fluid dynamics ; Fluid flow ; Fluids ; Lithium oxides ; Magnetohydrodynamics ; Mathematical models ; Nanoparticles ; Ordinary differential equations ; Parameters ; Porous media flow ; Prandtl number ; Simulation ; Stagnation point ; Stream functions (fluids)</subject><ispartof>AIP Conference Proceedings, 2022, Vol.2641 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Mufid, Muhammad Syifa’ul</contributor><contributor>Adzkiya, Dieky</contributor><creatorcontrib>Widodo, Basuki</creatorcontrib><creatorcontrib>Mayagrafinda, Isnainatul</creatorcontrib><creatorcontrib>Adzkiya, Dieky</creatorcontrib><title>Magnetohydrodynamics nano fluid flows through a vertical porous cylinder</title><title>AIP Conference Proceedings</title><description>Simulation studies and applications in mathematics continue to evolve as science and computer technology evolution. One of them is Magnetohydrodynamics (MHD) which is closely related to the field of engineering and industry. This study considers velocity and temperature analysis around the lower stagnation point on magnetohydrodynamics nano fluids through a vertical porous cylinder. Governing equations are derived from dimensional equations, which are mass or continuity equation, momentum equation, and energy equation. Further, the dimensional governing equations are converted to the non-dimensional governing equations. The non-dimensional governing equations are further transformed to similarity equations by introducing stream function. We obtain ordinary differential equation and boundary conditions, and we call mathematical model of the problem. We further solve the mathematical model numerically using finite difference method, i.e. Keller Box scheme or method. For running numerical simulation, we apply two nano fluids, i.e. nano particle Li2O and Fe2O3with water as basic fluid for the nano fluids. The numerical simulation results show that velocity of the nano-fluid increases when parameters of magnetic and porous increase. However, the velocity of the nano fluid increases when the volume fraction and Prandtl number decrease. Further, the temperature of nano fluid increases when the parameter of magnetic, porous, and Prandtl number decrease. However, the temperature of nano fluid increases when the volume fraction increases.</description><subject>Boundary conditions</subject><subject>Continuity equation</subject><subject>Cylinders</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Lithium oxides</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Porous media flow</subject><subject>Prandtl number</subject><subject>Simulation</subject><subject>Stagnation point</subject><subject>Stream functions (fluids)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLw0AYXETBWj34DwLehNR9ZpOjFLVCxUsP3pYv-2i2pNm4myj590baywwzDDMwCN0TvCK4YE9ihQkjEvMLtCBCkFwWpLhEC4wrnlPOvq7RTUoHjGklZblAmw_Yd3YIzWRiMFMHR69T1kEXMteO3swYflM2NDGM-yaD7MfGwWtosz7MVsr01PrO2HiLrhy0yd6deYl2ry-79Sbffr69r5-3eV-VPGdWEiZrDQwqoI6wis0WI-UsbUEADDitbW0krSV2phLUUu4s8MJJrWu2RA-n2j6G79GmQR3CGLt5UVEpRCEqXPI59XhKJe0HGHzoVB_9EeKkCFb_RymhzkexP_UVXC0</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Widodo, Basuki</creator><creator>Mayagrafinda, Isnainatul</creator><creator>Adzkiya, Dieky</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221219</creationdate><title>Magnetohydrodynamics nano fluid flows through a vertical porous cylinder</title><author>Widodo, Basuki ; Mayagrafinda, Isnainatul ; Adzkiya, Dieky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p984-3e7137bca3a9a2f13933e7318a9ae61aadafccebd72b70fd952e24fea46f7ccb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Continuity equation</topic><topic>Cylinders</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Lithium oxides</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Porous media flow</topic><topic>Prandtl number</topic><topic>Simulation</topic><topic>Stagnation point</topic><topic>Stream functions (fluids)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widodo, Basuki</creatorcontrib><creatorcontrib>Mayagrafinda, Isnainatul</creatorcontrib><creatorcontrib>Adzkiya, Dieky</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widodo, Basuki</au><au>Mayagrafinda, Isnainatul</au><au>Adzkiya, Dieky</au><au>Mufid, Muhammad Syifa’ul</au><au>Adzkiya, Dieky</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Magnetohydrodynamics nano fluid flows through a vertical porous cylinder</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-12-19</date><risdate>2022</risdate><volume>2641</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Simulation studies and applications in mathematics continue to evolve as science and computer technology evolution. One of them is Magnetohydrodynamics (MHD) which is closely related to the field of engineering and industry. This study considers velocity and temperature analysis around the lower stagnation point on magnetohydrodynamics nano fluids through a vertical porous cylinder. Governing equations are derived from dimensional equations, which are mass or continuity equation, momentum equation, and energy equation. Further, the dimensional governing equations are converted to the non-dimensional governing equations. The non-dimensional governing equations are further transformed to similarity equations by introducing stream function. We obtain ordinary differential equation and boundary conditions, and we call mathematical model of the problem. We further solve the mathematical model numerically using finite difference method, i.e. Keller Box scheme or method. For running numerical simulation, we apply two nano fluids, i.e. nano particle Li2O and Fe2O3with water as basic fluid for the nano fluids. The numerical simulation results show that velocity of the nano-fluid increases when parameters of magnetic and porous increase. However, the velocity of the nano fluid increases when the volume fraction and Prandtl number decrease. Further, the temperature of nano fluid increases when the parameter of magnetic, porous, and Prandtl number decrease. However, the temperature of nano fluid increases when the volume fraction increases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0131704</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2022, Vol.2641 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2755659084 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Boundary conditions Continuity equation Cylinders Differential equations Finite difference method Fluid dynamics Fluid flow Fluids Lithium oxides Magnetohydrodynamics Mathematical models Nanoparticles Ordinary differential equations Parameters Porous media flow Prandtl number Simulation Stagnation point Stream functions (fluids) |
title | Magnetohydrodynamics nano fluid flows through a vertical porous cylinder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Magnetohydrodynamics%20nano%20fluid%20flows%20through%20a%20vertical%20porous%20cylinder&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Widodo,%20Basuki&rft.date=2022-12-19&rft.volume=2641&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0131704&rft_dat=%3Cproquest_scita%3E2755659084%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p984-3e7137bca3a9a2f13933e7318a9ae61aadafccebd72b70fd952e24fea46f7ccb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755659084&rft_id=info:pmid/&rfr_iscdi=true |