Loading…
Multiscale modelling potentialities for solid oxide fuel cell performance and degradation analysis
Solid oxide fuel cells are electrochemical devices that are able to directly convert the chemical energy of fed fuels to electricity as well as to provide heat through exhausted gases allowing a higher energy efficiency compared to tradition thermal engines. However, the state-of-the-art materials s...
Saved in:
Published in: | Sustainable energy & fuels 2022-12, Vol.7 (1), p.28-293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid oxide fuel cells are electrochemical devices that are able to directly convert the chemical energy of fed fuels to electricity as well as to provide heat through exhausted gases allowing a higher energy efficiency compared to tradition thermal engines. However, the state-of-the-art materials show a drastic performance drop after too few working hours because of irreversible microstructural changes. Here the main issue consists of improving cell durability by optimising its structure and operative conditions. Modelling can significantly support this target, permitting a better understanding of different phenomena and providing information that are difficult to directly measure. However, degradation simulation is a quite challenging task due to the complexity of the studied systems, where different phenomena overlap, as well as due to the numerous data requested on both electrochemical and microstructural features. Depending on the available cell information and the analysis detail level, a multiscale modelling approach is a promising solution for providing effective results with reduced computational efforts. Based on a macroscale characterization, for example, semi-empirical degradation functions can be directly derived from electrochemical impedance spectra and area-specific resistance variations without knowing anything on the microstructure in order to estimate global cell performance and durability through a lumped-parameter model. Whereas, when aiming at the identification of an aged element specific behaviour, detailed formulations have to be introduced for each mechanism following a microscale approach. In such cases, a local-level modelling is fundamental in view of uneven distributions of properties on the cell plane which influence locally the degradation process development and resulting performance.
Based on a multiscale approach, the in-home built Fortran code SIMFC allows for high-temperature fuel cell simulation from material intrinsic properties to system overall operation. |
---|---|
ISSN: | 2398-4902 2398-4902 |
DOI: | 10.1039/d2se01118b |