Loading…
(L_{1}\)- Properties of vector-valued Banach algebras
Let \(G\) be a locally compact group and \(A\) be a commutative semisimple Banach algebra over the scalar field \(\mathbb{C}\). The correlation between different types of \(BSE\)- Banach algebras \(A\), and the Banach algebras \(L^{1}(G, A)\) are assessed. It is found and approved that \(M(G, A) = L...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aghakoochaki, Maryam Rejali, Ali |
description | Let \(G\) be a locally compact group and \(A\) be a commutative semisimple Banach algebra over the scalar field \(\mathbb{C}\). The correlation between different types of \(BSE\)- Banach algebras \(A\), and the Banach algebras \(L^{1}(G, A)\) are assessed. It is found and approved that \(M(G, A) = L^{1}(G, A)\) if and only if \(G\) is discrete. Furthermore, some properties of vector-valued measure algebras on groups are given, so that \(M(G, A)\) is a convolution measure algebra. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755988121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755988121</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559881213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw1fCJrzasjdHUVQgoyi9ILSrJTC1WyE9TKEtNLskv0i1LzClNTVFwSsxLTM5QSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NTU0sLC0MjQ2PiVAEAHfc0KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755988121</pqid></control><display><type>article</type><title>(L_{1}\)- Properties of vector-valued Banach algebras</title><source>Publicly Available Content (ProQuest)</source><creator>Aghakoochaki, Maryam ; Rejali, Ali</creator><creatorcontrib>Aghakoochaki, Maryam ; Rejali, Ali</creatorcontrib><description>Let \(G\) be a locally compact group and \(A\) be a commutative semisimple Banach algebra over the scalar field \(\mathbb{C}\). The correlation between different types of \(BSE\)- Banach algebras \(A\), and the Banach algebras \(L^{1}(G, A)\) are assessed. It is found and approved that \(M(G, A) = L^{1}(G, A)\) if and only if \(G\) is discrete. Furthermore, some properties of vector-valued measure algebras on groups are given, so that \(M(G, A)\) is a convolution measure algebra.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Banach spaces ; Fields (mathematics) ; Group theory ; Scalars</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2755988121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Aghakoochaki, Maryam</creatorcontrib><creatorcontrib>Rejali, Ali</creatorcontrib><title>(L_{1}\)- Properties of vector-valued Banach algebras</title><title>arXiv.org</title><description>Let \(G\) be a locally compact group and \(A\) be a commutative semisimple Banach algebra over the scalar field \(\mathbb{C}\). The correlation between different types of \(BSE\)- Banach algebras \(A\), and the Banach algebras \(L^{1}(G, A)\) are assessed. It is found and approved that \(M(G, A) = L^{1}(G, A)\) if and only if \(G\) is discrete. Furthermore, some properties of vector-valued measure algebras on groups are given, so that \(M(G, A)\) is a convolution measure algebra.</description><subject>Algebra</subject><subject>Banach spaces</subject><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Scalars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw1fCJrzasjdHUVQgoyi9ILSrJTC1WyE9TKEtNLskv0i1LzClNTVFwSsxLTM5QSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NTU0sLC0MjQ2PiVAEAHfc0KQ</recordid><startdate>20221218</startdate><enddate>20221218</enddate><creator>Aghakoochaki, Maryam</creator><creator>Rejali, Ali</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221218</creationdate><title>(L_{1}\)- Properties of vector-valued Banach algebras</title><author>Aghakoochaki, Maryam ; Rejali, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559881213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Banach spaces</topic><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Scalars</topic><toplevel>online_resources</toplevel><creatorcontrib>Aghakoochaki, Maryam</creatorcontrib><creatorcontrib>Rejali, Ali</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghakoochaki, Maryam</au><au>Rejali, Ali</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(L_{1}\)- Properties of vector-valued Banach algebras</atitle><jtitle>arXiv.org</jtitle><date>2022-12-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a locally compact group and \(A\) be a commutative semisimple Banach algebra over the scalar field \(\mathbb{C}\). The correlation between different types of \(BSE\)- Banach algebras \(A\), and the Banach algebras \(L^{1}(G, A)\) are assessed. It is found and approved that \(M(G, A) = L^{1}(G, A)\) if and only if \(G\) is discrete. Furthermore, some properties of vector-valued measure algebras on groups are given, so that \(M(G, A)\) is a convolution measure algebra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2755988121 |
source | Publicly Available Content (ProQuest) |
subjects | Algebra Banach spaces Fields (mathematics) Group theory Scalars |
title | (L_{1}\)- Properties of vector-valued Banach algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(L_%7B1%7D%5C)-%20Properties%20of%20vector-valued%20Banach%20algebras&rft.jtitle=arXiv.org&rft.au=Aghakoochaki,%20Maryam&rft.date=2022-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755988121%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27559881213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755988121&rft_id=info:pmid/&rfr_iscdi=true |