Loading…
Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks
This paper deals with the problem of video-based face recognition. Nowadays, facial recognition methods have made a big step forward, but video-based recognition with its poor quality, difficult lighting conditions, and real-time requirements is still a difficult and unfinished task. The paper uses...
Saved in:
Published in: | Automation and remote control 2022-10, Vol.83 (10), p.1567-1575 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23 |
container_end_page | 1575 |
container_issue | 10 |
container_start_page | 1567 |
container_title | Automation and remote control |
container_volume | 83 |
creator | Bobkov, A. V. Aung, Kh |
description | This paper deals with the problem of video-based face recognition. Nowadays, facial recognition methods have made a big step forward, but video-based recognition with its poor quality, difficult lighting conditions, and real-time requirements is still a difficult and unfinished task.
The paper uses the apparatus of convolutional networks for various stages of processing: for capturing and detecting a face, for constructing a feature vector, and finally for recognition. All algorithms are implemented and studied in the Matlab environment to simplify their further export to embedded applications. |
doi_str_mv | 10.1134/S00051179220100095 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756147498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756147498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9GZ3SSbHLVoLRQrtRY8hd1ktqS2Sd1Nlf57t1TwIAgD8_U-78AwdolwjSjjmxcASBBVLgRgqPPkiPUwhSySIMUx6-330V5wys68XwIggpA9Np2SXkWzek38mZxvGz6qqOlqW5e6q0NrdnxeV9Ty0VoviN9pTxUP87fJePIpuG4qPh8OOab8ibqv1r37c3Zi9crTxU_us9eH-9ngMRpPhqPB7TgqJeZdRDYnoyyIXJpUZzLLs1LFBsrKCCSbGCvKUimMVVZVFiRKHSLVYNAGQMg-uzr4blz7sSXfFct265pwshAqSQMY51lQiYOqdK33jmyxcfVau12BUOx_V_z9XYDkAfJB3CzI_Vr_Q30DR2FuMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756147498</pqid></control><display><type>article</type><title>Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks</title><source>Springer Link</source><creator>Bobkov, A. V. ; Aung, Kh</creator><creatorcontrib>Bobkov, A. V. ; Aung, Kh</creatorcontrib><description>This paper deals with the problem of video-based face recognition. Nowadays, facial recognition methods have made a big step forward, but video-based recognition with its poor quality, difficult lighting conditions, and real-time requirements is still a difficult and unfinished task.
The paper uses the apparatus of convolutional networks for various stages of processing: for capturing and detecting a face, for constructing a feature vector, and finally for recognition. All algorithms are implemented and studied in the Matlab environment to simplify their further export to embedded applications.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S00051179220100095</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Face recognition ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Real time ; Robotics ; Systems Theory ; Thematic Issue</subject><ispartof>Automation and remote control, 2022-10, Vol.83 (10), p.1567-1575</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23</citedby><cites>FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bobkov, A. V.</creatorcontrib><creatorcontrib>Aung, Kh</creatorcontrib><title>Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>This paper deals with the problem of video-based face recognition. Nowadays, facial recognition methods have made a big step forward, but video-based recognition with its poor quality, difficult lighting conditions, and real-time requirements is still a difficult and unfinished task.
The paper uses the apparatus of convolutional networks for various stages of processing: for capturing and detecting a face, for constructing a feature vector, and finally for recognition. All algorithms are implemented and studied in the Matlab environment to simplify their further export to embedded applications.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Face recognition</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Real time</subject><subject>Robotics</subject><subject>Systems Theory</subject><subject>Thematic Issue</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9GZ3SSbHLVoLRQrtRY8hd1ktqS2Sd1Nlf57t1TwIAgD8_U-78AwdolwjSjjmxcASBBVLgRgqPPkiPUwhSySIMUx6-330V5wys68XwIggpA9Np2SXkWzek38mZxvGz6qqOlqW5e6q0NrdnxeV9Ty0VoviN9pTxUP87fJePIpuG4qPh8OOab8ibqv1r37c3Zi9crTxU_us9eH-9ngMRpPhqPB7TgqJeZdRDYnoyyIXJpUZzLLs1LFBsrKCCSbGCvKUimMVVZVFiRKHSLVYNAGQMg-uzr4blz7sSXfFct265pwshAqSQMY51lQiYOqdK33jmyxcfVau12BUOx_V_z9XYDkAfJB3CzI_Vr_Q30DR2FuMg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bobkov, A. V.</creator><creator>Aung, Kh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks</title><author>Bobkov, A. V. ; Aung, Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Face recognition</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Real time</topic><topic>Robotics</topic><topic>Systems Theory</topic><topic>Thematic Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobkov, A. V.</creatorcontrib><creatorcontrib>Aung, Kh</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobkov, A. V.</au><au>Aung, Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>83</volume><issue>10</issue><spage>1567</spage><epage>1575</epage><pages>1567-1575</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>This paper deals with the problem of video-based face recognition. Nowadays, facial recognition methods have made a big step forward, but video-based recognition with its poor quality, difficult lighting conditions, and real-time requirements is still a difficult and unfinished task.
The paper uses the apparatus of convolutional networks for various stages of processing: for capturing and detecting a face, for constructing a feature vector, and finally for recognition. All algorithms are implemented and studied in the Matlab environment to simplify their further export to embedded applications.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S00051179220100095</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2022-10, Vol.83 (10), p.1567-1575 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_2756147498 |
source | Springer Link |
subjects | Algorithms CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Face recognition Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Real time Robotics Systems Theory Thematic Issue |
title | Real-Time Person Identification by Video Image Based on YOLOv2 and VGG 16 Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Person%20Identification%20by%20Video%20Image%20Based%20on%20YOLOv2%20and%20VGG%2016%20Networks&rft.jtitle=Automation%20and%20remote%20control&rft.au=Bobkov,%20A.%20V.&rft.date=2022-10-01&rft.volume=83&rft.issue=10&rft.spage=1567&rft.epage=1575&rft.pages=1567-1575&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S00051179220100095&rft_dat=%3Cproquest_cross%3E2756147498%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ef9eb7f0293b6a83898c74b0cdb21ef5bf2cc771478ddf0313a13a6a0b1fb6a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756147498&rft_id=info:pmid/&rfr_iscdi=true |