Loading…

Dual-frequency comb spectroscopy studies of ionic strength effects in time-resolved ATR-SEIRAS

[Display omitted] •DFCS allows sub-millisecond resolution of temporal processes occurring at an electrode surface.•IR transient time constants are directly proportional to the RC cell constant.•Absorption spectra line shape depends on coverage. Attenuated total reflection surface enhanced infrared a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2022-09, Vol.921, p.116672, Article 116672
Main Authors: Lins, Erick, Andvaag, Ian R., Read, Stuart, Rosendahl, Scott M., Burgess, Ian J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •DFCS allows sub-millisecond resolution of temporal processes occurring at an electrode surface.•IR transient time constants are directly proportional to the RC cell constant.•Absorption spectra line shape depends on coverage. Attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies of the potential induced desorption/adsorption of a model organic monolayer is described using a paradigm-challenging dual frequency comb spectrometer. Experimentally measured ATR-SEIRAS transients reveal that both the rates of adsorption and desorption of 4-dimethylaminopyridine (DMAP) are dependent on the ionic strength of the supporting electrolyte. The characteristic time scales of monolayer desorption are found to be directly proportional to the spectroelectrochemical cell time constant indicating that the rate of film dissolution is much faster than the RC charging of the interface. The slow response of the interfacial charging process relative to the kinetics of the film re-organization/desorption processes means that the transient is parametrically linked to the potential dependent DMAP adsorption isotherm. The transients also reveal that the line shape of the molecular IR absorption feature exhibits a temporal dependence. A Lorentzian band is seen at early stages of the desorption transient but increasingly exhibit an anomalous bimodal line-shape at longer times. The development of the anomalous line shape is more pronounced at equivalent times in higher ionic strength electrolytes. Such an effect has been modelled using effective medium theory and is explained by the fact that the fraction of organic layer in the SEIRAS active film influences the observed apparent absorption features. The observation of a coverage dependence on SEIRAS line shapes adds new complexity to previous reports that linked anomalous absorption features exclusively to the metal film morphology and metal volume fraction.
ISSN:1572-6657
1873-2569
DOI:10.1016/j.jelechem.2022.116672