Loading…

Assessment of spatial variations in pollution load of agricultural soil samples of Ludhiana district, Punjab

Surveying, mapping, and characterizing soil properties are the critical steps in designating soil quality. Continuous use of inorganic fertilizers, pesticides, wastewater discharge, and leachates cause soil degradation and contamination of potable water and food ultimately leading to soil pollution...

Full description

Saved in:
Bibliographic Details
Published in:Environmental monitoring and assessment 2023-01, Vol.195 (1), p.222, Article 222
Main Authors: Sharma, Priyanka, Kaur, Jaskaran, Katnoria, Jatinder Kaur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surveying, mapping, and characterizing soil properties are the critical steps in designating soil quality. Continuous use of inorganic fertilizers, pesticides, wastewater discharge, and leachates cause soil degradation and contamination of potable water and food ultimately leading to soil pollution and ill effects on human health. This study was undertaken to monitor the soil quality of agricultural soil samples collected from ten different agricultural fields in Ludhiana, Punjab (India), near Buddha Nullah, a Sutlej River tributary. Physico-chemical characteristics and heavy metal contents of soil samples were estimated during the study. The obtained results showed that all the agricultural soil samples were slightly alkaline in nature. Soil nutrients such as nitrates, phosphates, and potassium ranged from 0.06 to 0.11 mg/g, 0.03 to 0.08 mg/g, and 0.04 to 0.15 mg/g respectively. The contents (mg/kg) of heavy metals such as cadmium, chromium, cobalt, copper, and lead were observed to be above the permissible limits in most of the soil samples. Allium cepa root chromosomal aberration assay was used for genotoxicity studies which has shown that Hambran (HBN), a site approx. 12.9 km of the Buddha Nullah, induced maximum genotoxic effects, i.e., 46.7% aberrant cells in root tip cells of Allium cepa . The statistical analysis revealed the positive correlation of heavy metals like Cr, Cu, and Ni (at p  ≤ 0.05 and p  ≤ 0.01) with the total chromosomal aberrations induced in Allium cepa .
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-022-10816-z