Loading…

VoronoiPatches: Evaluating A New Data Augmentation Method

Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-12
Main Authors: Illium, Steffen, Griffin, Gretchen, Kölle, Michael, Zorn, Maximilian, Nüßlein, Jonas, Linnhoff-Popien, Claudia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Illium, Steffen
Griffin, Gretchen
Kölle, Michael
Zorn, Maximilian
Nüßlein, Jonas
Linnhoff-Popien, Claudia
description Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2756546438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756546438</sourcerecordid><originalsourceid>FETCH-proquest_journals_27565464383</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDMsvys_LzwxILEnOSC22UnAtS8wpTSzJzEtXcFTwSy1XcEksSVRwLE3PTc0rAYrn5yn4ppZk5KfwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbmpmamJmYmxhTFxqgBTPTYS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756546438</pqid></control><display><type>article</type><title>VoronoiPatches: Evaluating A New Data Augmentation Method</title><source>Publicly Available Content Database</source><creator>Illium, Steffen ; Griffin, Gretchen ; Kölle, Michael ; Zorn, Maximilian ; Nüßlein, Jonas ; Linnhoff-Popien, Claudia</creator><creatorcontrib>Illium, Steffen ; Griffin, Gretchen ; Kölle, Michael ; Zorn, Maximilian ; Nüßlein, Jonas ; Linnhoff-Popien, Claudia</creatorcontrib><description>Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Data augmentation ; Patches (structures)</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2756546438?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Illium, Steffen</creatorcontrib><creatorcontrib>Griffin, Gretchen</creatorcontrib><creatorcontrib>Kölle, Michael</creatorcontrib><creatorcontrib>Zorn, Maximilian</creatorcontrib><creatorcontrib>Nüßlein, Jonas</creatorcontrib><creatorcontrib>Linnhoff-Popien, Claudia</creatorcontrib><title>VoronoiPatches: Evaluating A New Data Augmentation Method</title><title>arXiv.org</title><description>Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Patches (structures)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDMsvys_LzwxILEnOSC22UnAtS8wpTSzJzEtXcFTwSy1XcEksSVRwLE3PTc0rAYrn5yn4ppZk5KfwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbmpmamJmYmxhTFxqgBTPTYS</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Illium, Steffen</creator><creator>Griffin, Gretchen</creator><creator>Kölle, Michael</creator><creator>Zorn, Maximilian</creator><creator>Nüßlein, Jonas</creator><creator>Linnhoff-Popien, Claudia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221223</creationdate><title>VoronoiPatches: Evaluating A New Data Augmentation Method</title><author>Illium, Steffen ; Griffin, Gretchen ; Kölle, Michael ; Zorn, Maximilian ; Nüßlein, Jonas ; Linnhoff-Popien, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27565464383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Patches (structures)</topic><toplevel>online_resources</toplevel><creatorcontrib>Illium, Steffen</creatorcontrib><creatorcontrib>Griffin, Gretchen</creatorcontrib><creatorcontrib>Kölle, Michael</creatorcontrib><creatorcontrib>Zorn, Maximilian</creatorcontrib><creatorcontrib>Nüßlein, Jonas</creatorcontrib><creatorcontrib>Linnhoff-Popien, Claudia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illium, Steffen</au><au>Griffin, Gretchen</au><au>Kölle, Michael</au><au>Zorn, Maximilian</au><au>Nüßlein, Jonas</au><au>Linnhoff-Popien, Claudia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VoronoiPatches: Evaluating A New Data Augmentation Method</atitle><jtitle>arXiv.org</jtitle><date>2022-12-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2756546438
source Publicly Available Content Database
subjects Algorithms
Artificial neural networks
Data augmentation
Patches (structures)
title VoronoiPatches: Evaluating A New Data Augmentation Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VoronoiPatches:%20Evaluating%20A%20New%20Data%20Augmentation%20Method&rft.jtitle=arXiv.org&rft.au=Illium,%20Steffen&rft.date=2022-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2756546438%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27565464383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756546438&rft_id=info:pmid/&rfr_iscdi=true