Loading…
Physical and mechanical properties of kenaf/flax hybrid composites
This research investigates the physical and mechanical properties of hybrid composites made of epoxy reinforced by kenaf and flax natural fibers to investigate the hybridization influences of the composites. Pure and hybrid composites were fabricated using bi‐directional kenaf and flax fabrics at di...
Saved in:
Published in: | Journal of applied polymer science 2023-02, Vol.140 (5), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research investigates the physical and mechanical properties of hybrid composites made of epoxy reinforced by kenaf and flax natural fibers to investigate the hybridization influences of the composites. Pure and hybrid composites were fabricated using bi‐directional kenaf and flax fabrics at different stacking sequences utilizing the vacuum‐assisted resin infusion method. The pure and hybrid composites' physical properties, such as density, fiber volume fraction (FVF), water absorption capacity, and dimensional stability, were measured. The tests of tensile, flexural, interlaminar shear and fracture toughness (Mode II) were examined to determine the mechanical properties. The results revealed that density remained unchanged for the hybrid compared to pure kenaf/epoxy composites. The tensile, flexural, and interlaminar shear performance of flax/epoxy composite is improved by an increment of kenaf FVF in hybrid composites. The stacking sequence significantly affected the mechanical properties of hybrid composites. The highest tensile strength (59.8 MPa) was obtained for FK2 (alternative sequence of flax and kenaf fibers). However, FK3 (flax fiber located on the outer surfaces) had the highest interlaminar shear strength (12.5 MPa) and fracture toughness (3302.3 J/m2) among all tested hybrid composites. The highest water resistance was achieved for FK5 with the lowest thickness swelling. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.53421 |