Loading…

Risk Level Assessment and CO Prediction of Underground Mines for Poisoning and Asphyxiation Accidents

To effectively prevent the occurrence of poisoning and asphyxiation accidents in underground mines, this paper establishes an evaluation index system for the factors influencing accidents, constructs a combined assignment model to solve the problem of low accuracy of assignment results caused by a s...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-12, Vol.14 (24), p.16640
Main Authors: Liu, Jie, Ma, Qian, Wang, Wanqing, Yang, Guanding, Zhou, Haowen, Hu, Xinyue, Teng, Liangyun, Luo, Xuehua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To effectively prevent the occurrence of poisoning and asphyxiation accidents in underground mines, this paper establishes an evaluation index system for the factors influencing accidents, constructs a combined assignment model to solve the problem of low accuracy of assignment results caused by a single algorithm, predicts the CO concentration after blasting because CO poisoning is the main cause of accidents, explores the accuracy of different time series prediction methods, and projects the required ventilation after blasting to ensure the safe operation of personnel. Firstly, starting from “man-machine-environment-management”, social factors are introduced to build an evaluation index system. Secondly, three combinatorial allocation models were compared, namely rough set theory–G1 method (RS-G1), entropy method–G1 method (Entropy-G1), and CRITIC method–G1 method (CRITIC-G1). The best model was selected and the allocation rating model was constructed in combination with the cloud model, and the mine risk level was evaluated by using the model. Thirdly, the GM(1,1) model, the quadratic exponential smoothing method, and the ARIMA model were compared by calculating posterior differences and errors, and the method with the highest accuracy was selected for predicting CO concentration. The results show that the inclusion of social assessment indexes in the assessment index system makes the consideration of assessment indexes more comprehensive. The RS-G1 combined assignment model achieved higher accuracy than other combined assignment models, and the GM(1,1) model had the highest accuracy and the best prediction effect. The results of the study can help provide targeted prevention and management measures for poisoning and asphyxiation accidents in underground mines.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142416640