Loading…

A Low-Cost Wireless Sensor for Real-Time Monitoring of Water Level in Lowland Rice Field under Alternate Wetting and Drying Irrigation

The use of wireless sensors for real-time monitoring of field water level would greatly facilitate the application of alternate wetting and drying (AWD), an irrigation water management technique proven to result to significant water savings and reduced methane emissions in lowland rice production sy...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-12, Vol.14 (24), p.4128
Main Authors: Cruz, Kristelle Marie S. Dela, Ella, Victor B., Suministrado, Delfin C., Pereira, Gamiello S., Agulto, Edzel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of wireless sensors for real-time monitoring of field water level would greatly facilitate the application of alternate wetting and drying (AWD), an irrigation water management technique proven to result to significant water savings and reduced methane emissions in lowland rice production systems. However, most of the commercially available wireless sensors are generally costly. This study developed a low-cost wireless sensor that can perform real-time monitoring of water depth and surface temperature in lowland rice fields under an AWD irrigation regime. The sensor is composed mainly of an ultrasonic depth sensor, a waterproof temperature sensor, a humidity sensor, and a Wi-Fi-enabled microcontroller enclosed in a PVC cap that can be mounted in AWD pipes. The sensor was tested under laboratory, pseudo-field conditions and actual field conditions. Results showed a relatively high degree of agreement between sensor and manual measurements of water depth under all testing conditions, with the error ranging from only 5.2% to 6.6% and RMSE of 5.0 mm to 13.5 mm. The performance of the low-cost sensor also proved to be comparable with that of the high-end sensor, exhibiting practically similar measurement accuracy and higher precision. The wireless sensor developed in this study can provide a low-cost alternative to the high-cost and high-end sensors and other commercially available counterparts for efficient irrigation water management in lowland crop production systems during water-scarce conditions induced by climate change and climate variability.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14244128