Loading…
Design and Optimization of a Backup Renewable Energy Station for Photovoltaic Hybrid System in the New Jeddah Industrial City
This study aims to design and optimize a backup renewable energy station and possibility of the grid-connected hybrid photovoltaic (PV) power system for firms in 2nd Jeddah industrial city workshops. Wind and solar energy potentials were examined, and data from a variety of sources were obtained as...
Saved in:
Published in: | Sustainability 2022-12, Vol.14 (24), p.17044 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims to design and optimize a backup renewable energy station and possibility of the grid-connected hybrid photovoltaic (PV) power system for firms in 2nd Jeddah industrial city workshops. Wind and solar energy potentials were examined, and data from a variety of sources were obtained as part of the study process. It is important to utilize the application hybrid optimization model for electric renewables (HOMER) to evaluate relevant data as well as the suggested hybrid power system’s economic feasibility. The system’s payback is solely based on monthly grid bill savings and increased profits due to the absence of a power shortage. The most cost-effective system design is measured in terms of the original cost, ongoing cost, cost per unit, and total system net present value. As a result, fulfilling the load demand with 220 kW wind turbines and 500 kW solar PV is both cost-effective and efficient. The simulation results for the second scenario with a wind turbine show that a combination of a 500 kW PV, 300 kWh battery capacity, 22 kW wind turbine, and 315 kW converter is the most feasible solution for this case study, with SAR 4,433,658 net present cost (NPC) and SAR 0.1741 LCOE. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su142417044 |