Loading…
SERENGETI: Massively Multilingual Language Models for Africa
Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ife Adebara Elmadany, AbdelRahim Abdul-Mageed, Muhammad Alcides Alcoba Inciarte |
description | Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}} |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2756876680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756876680</sourcerecordid><originalsourceid>FETCH-proquest_journals_27568766803</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCXYNcvVzdw3xtFLwTSwuzixLzalU8C3NKcnMycxLL03MUfBJBNHpqQq--SmpOcUKaflFCo5pRZnJiTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbmpmYW5mZmFgTJwqAKxBNpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756876680</pqid></control><display><type>article</type><title>SERENGETI: Massively Multilingual Language Models for Africa</title><source>Publicly Available Content Database</source><creator>Ife Adebara ; Elmadany, AbdelRahim ; Abdul-Mageed, Muhammad ; Alcides Alcoba Inciarte</creator><creatorcontrib>Ife Adebara ; Elmadany, AbdelRahim ; Abdul-Mageed, Muhammad ; Alcides Alcoba Inciarte</creatorcontrib><description>Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Error analysis ; Intelligibility ; Languages</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2756876680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,36999,44577</link.rule.ids></links><search><creatorcontrib>Ife Adebara</creatorcontrib><creatorcontrib>Elmadany, AbdelRahim</creatorcontrib><creatorcontrib>Abdul-Mageed, Muhammad</creatorcontrib><creatorcontrib>Alcides Alcoba Inciarte</creatorcontrib><title>SERENGETI: Massively Multilingual Language Models for Africa</title><title>arXiv.org</title><description>Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}</description><subject>Datasets</subject><subject>Error analysis</subject><subject>Intelligibility</subject><subject>Languages</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCXYNcvVzdw3xtFLwTSwuzixLzalU8C3NKcnMycxLL03MUfBJBNHpqQq--SmpOcUKaflFCo5pRZnJiTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbmpmYW5mZmFgTJwqAKxBNpg</recordid><startdate>20230526</startdate><enddate>20230526</enddate><creator>Ife Adebara</creator><creator>Elmadany, AbdelRahim</creator><creator>Abdul-Mageed, Muhammad</creator><creator>Alcides Alcoba Inciarte</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230526</creationdate><title>SERENGETI: Massively Multilingual Language Models for Africa</title><author>Ife Adebara ; Elmadany, AbdelRahim ; Abdul-Mageed, Muhammad ; Alcides Alcoba Inciarte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27568766803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Error analysis</topic><topic>Intelligibility</topic><topic>Languages</topic><toplevel>online_resources</toplevel><creatorcontrib>Ife Adebara</creatorcontrib><creatorcontrib>Elmadany, AbdelRahim</creatorcontrib><creatorcontrib>Abdul-Mageed, Muhammad</creatorcontrib><creatorcontrib>Alcides Alcoba Inciarte</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ife Adebara</au><au>Elmadany, AbdelRahim</au><au>Abdul-Mageed, Muhammad</au><au>Alcides Alcoba Inciarte</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SERENGETI: Massively Multilingual Language Models for Africa</atitle><jtitle>arXiv.org</jtitle><date>2023-05-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2756876680 |
source | Publicly Available Content Database |
subjects | Datasets Error analysis Intelligibility Languages |
title | SERENGETI: Massively Multilingual Language Models for Africa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SERENGETI:%20Massively%20Multilingual%20Language%20Models%20for%20Africa&rft.jtitle=arXiv.org&rft.au=Ife%20Adebara&rft.date=2023-05-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2756876680%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27568766803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756876680&rft_id=info:pmid/&rfr_iscdi=true |