Loading…
Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out i...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vinícius Camargo da Silva Papa, João Paulo Kelton Augusto Pontara da Costa |
description | Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification. |
doi_str_mv | 10.48550/arxiv.2212.10707 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2756876834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756876834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a957-2451768e4a2f32c5b115d29cbe51c80d4070bd7ed4c3962e406ac72876dfe7e3</originalsourceid><addsrcrecordid>eNotj0FrAjEUhEOhULH-gN4CPa9NXpLNehSxVrD0sPYsMXlbI2u2TaIVf30X62mG4WOGIeSJs7GslGIvJp79aQzAYcyZZvqODEAIXlQS4IGMUtozxqDUoJQYkN38nKOx2Z-QrvGcaX08HEz0F5N9F-hn8uGLLjBgNK2_oKNT5_yVfu8cton--ryjy5Dx2tKFRJsu0hr7JFjsTYvX_JHcN6ZNOLrpkNSv8_XsrVh9LJaz6aowE6ULkIrrskJpoBFg1ZZz5WBit6i4rZiT_aOt0-ikFZMSULLSWA2VLl2DGsWQPP-3fsfu54gpb_bdMYZ-cANalT1XCSn-AG1BWc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756876834</pqid></control><display><type>article</type><title>Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection</title><source>Publicly Available Content Database</source><creator>Vinícius Camargo da Silva ; Papa, João Paulo ; Kelton Augusto Pontara da Costa</creator><creatorcontrib>Vinícius Camargo da Silva ; Papa, João Paulo ; Kelton Augusto Pontara da Costa</creatorcontrib><description>Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2212.10707</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feature extraction ; Machine learning</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2756876834?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Vinícius Camargo da Silva</creatorcontrib><creatorcontrib>Papa, João Paulo</creatorcontrib><creatorcontrib>Kelton Augusto Pontara da Costa</creatorcontrib><title>Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection</title><title>arXiv.org</title><description>Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.</description><subject>Feature extraction</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0FrAjEUhEOhULH-gN4CPa9NXpLNehSxVrD0sPYsMXlbI2u2TaIVf30X62mG4WOGIeSJs7GslGIvJp79aQzAYcyZZvqODEAIXlQS4IGMUtozxqDUoJQYkN38nKOx2Z-QrvGcaX08HEz0F5N9F-hn8uGLLjBgNK2_oKNT5_yVfu8cton--ryjy5Dx2tKFRJsu0hr7JFjsTYvX_JHcN6ZNOLrpkNSv8_XsrVh9LJaz6aowE6ULkIrrskJpoBFg1ZZz5WBit6i4rZiT_aOt0-ikFZMSULLSWA2VLl2DGsWQPP-3fsfu54gpb_bdMYZ-cANalT1XCSn-AG1BWc8</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Vinícius Camargo da Silva</creator><creator>Papa, João Paulo</creator><creator>Kelton Augusto Pontara da Costa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221221</creationdate><title>Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection</title><author>Vinícius Camargo da Silva ; Papa, João Paulo ; Kelton Augusto Pontara da Costa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a957-2451768e4a2f32c5b115d29cbe51c80d4070bd7ed4c3962e406ac72876dfe7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Feature extraction</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Vinícius Camargo da Silva</creatorcontrib><creatorcontrib>Papa, João Paulo</creatorcontrib><creatorcontrib>Kelton Augusto Pontara da Costa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinícius Camargo da Silva</au><au>Papa, João Paulo</au><au>Kelton Augusto Pontara da Costa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection</atitle><jtitle>arXiv.org</jtitle><date>2022-12-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2212.10707</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2756876834 |
source | Publicly Available Content Database |
subjects | Feature extraction Machine learning |
title | Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extractive%20Text%20Summarization%20Using%20Generalized%20Additive%20Models%20with%20Interactions%20for%20Sentence%20Selection&rft.jtitle=arXiv.org&rft.au=Vin%C3%ADcius%20Camargo%20da%20Silva&rft.date=2022-12-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2212.10707&rft_dat=%3Cproquest%3E2756876834%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a957-2451768e4a2f32c5b115d29cbe51c80d4070bd7ed4c3962e406ac72876dfe7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756876834&rft_id=info:pmid/&rfr_iscdi=true |