Loading…
Maximal Generalized Rank in Graphical Matrix Spaces
In this note we prove two extensions of a recent combinatorial characterization due to Li, Qiao, Wigderson, Wigderson and Zhang (arXiv:2206.04815) of the maximal dimension of bounded rank subspaces of the graphical matrix space associated with a bipartite graph. Our first result shows that the above...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note we prove two extensions of a recent combinatorial characterization due to Li, Qiao, Wigderson, Wigderson and Zhang (arXiv:2206.04815) of the maximal dimension of bounded rank subspaces of the graphical matrix space associated with a bipartite graph. Our first result shows that the above characterization remains valid for a wide class of generalized rank functions, including e.g. the permanental rank. Our second result extends the characterization to bounded rank subspaces of the graphical alternating matrix space associated with a general graph. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2212.11193 |