Loading…

Ionocaloric refrigeration cycle

Developing high-efficiency cooling with safe, low-global warming potential refrigerants is a grand challenge for tackling climate change. Caloric effect-based cooling technologies, such as magneto- or electrocaloric refrigeration, are promising but often require large applied fields for a relatively...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2022-12, Vol.378 (6626), p.1344-1348
Main Authors: Lilley, Drew, Prasher, Ravi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing high-efficiency cooling with safe, low-global warming potential refrigerants is a grand challenge for tackling climate change. Caloric effect-based cooling technologies, such as magneto- or electrocaloric refrigeration, are promising but often require large applied fields for a relatively low coefficient of performance and adiabatic temperature change. We propose using the ionocaloric effect and the accompanying thermodynamic cycle as a caloric-based, all-condensed-phase cooling technology. Theoretical and experimental results show higher adiabatic temperature change and entropy change per unit mass and volume compared with other caloric effects under low applied field strengths. We demonstrated the viability of a practical system using an ionocaloric Stirling refrigeration cycle. Our experimental results show a coefficient of performance of 30% relative to Carnot and a temperature lift as high as 25°C using a voltage strength of ~0.22 volts.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.ade1696