Loading…

Applications of Physics-Informed Neural Networks in Power Systems - A Review

The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, prod...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2023-01, Vol.38 (1), p.572-588
Main Authors: Huang, Bin, Wang, Jianhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373
cites cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373
container_end_page 588
container_issue 1
container_start_page 572
container_title IEEE transactions on power systems
container_volume 38
creator Huang, Bin
Wang, Jianhui
description The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.
doi_str_mv 10.1109/TPWRS.2022.3162473
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2757176888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743327</ieee_id><sourcerecordid>2757176888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00uh7sgz5mSYgPEqIEMC6bmXIbijAd20HCv3cQ4uos7ndObj6EbinpUUryx_nkczrrMcJYj1PJ-oqfoQ4VQmdEqvwcdYjWItO5IJfoKqUVIUS2hw4aD-p67W3R-FAlHByeLPfJ25SNKhfiBhb4DbaxWLfR7EL8SthXeBJ2EPFsnxrYJJzhAZ7Cj4fdNbpwxTrBzSm76OP5aT58zcbvL6PhYJxZzliTUaI0Z8RxuVBlwbmVpNS0b7USOQjCSiUcuJI7qwu3KJkFUUgiF5IqKzhXvIvuj7shNd4k6xuwSxuqCmxjWJ9qpUULPRyhOobvLaTGrMI2Vu1fhimhqJJa65ZiR8rGkFIEZ-roN0XcG0rMQa35U2sOas1JbVu6O5Y8APwXctXnnCn-C_d0c_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757176888</pqid></control><display><type>article</type><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Bin ; Wang, Jianhui</creator><creatorcontrib>Huang, Bin ; Wang, Jianhui ; Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><description>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3162473</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Data models ; Deep learning ; Domains ; Engineering ; first principle ; Mathematical models ; Neural networks ; Optimization ; Parameter estimation ; Physics ; physics-informed neural networks ; Power flow ; smart grids ; State of the art ; Training ; Training data</subject><ispartof>IEEE transactions on power systems, 2023-01, Vol.38 (1), p.572-588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</citedby><cites>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</cites><orcidid>0000-0001-5883-7370 ; 0000-0001-7162-509X ; 0000000158837370 ; 000000017162509X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2418785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</description><subject>Anomalies</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Engineering</subject><subject>first principle</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>physics-informed neural networks</subject><subject>Power flow</subject><subject>smart grids</subject><subject>State of the art</subject><subject>Training</subject><subject>Training data</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYj-Ad00uh7sgz5mSYgPEqIEMC6bmXIbijAd20HCv3cQ4uos7ndObj6EbinpUUryx_nkczrrMcJYj1PJ-oqfoQ4VQmdEqvwcdYjWItO5IJfoKqUVIUS2hw4aD-p67W3R-FAlHByeLPfJ25SNKhfiBhb4DbaxWLfR7EL8SthXeBJ2EPFsnxrYJJzhAZ7Cj4fdNbpwxTrBzSm76OP5aT58zcbvL6PhYJxZzliTUaI0Z8RxuVBlwbmVpNS0b7USOQjCSiUcuJI7qwu3KJkFUUgiF5IqKzhXvIvuj7shNd4k6xuwSxuqCmxjWJ9qpUULPRyhOobvLaTGrMI2Vu1fhimhqJJa65ZiR8rGkFIEZ-roN0XcG0rMQa35U2sOas1JbVu6O5Y8APwXctXnnCn-C_d0c_s</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Huang, Bin</creator><creator>Wang, Jianhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5883-7370</orcidid><orcidid>https://orcid.org/0000-0001-7162-509X</orcidid><orcidid>https://orcid.org/0000000158837370</orcidid><orcidid>https://orcid.org/000000017162509X</orcidid></search><sort><creationdate>202301</creationdate><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><author>Huang, Bin ; Wang, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Engineering</topic><topic>first principle</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>physics-informed neural networks</topic><topic>Power flow</topic><topic>smart grids</topic><topic>State of the art</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bin</au><au>Wang, Jianhui</au><aucorp>Univ. of North Carolina, Charlotte, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Physics-Informed Neural Networks in Power Systems - A Review</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>572</spage><epage>588</epage><pages>572-588</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3162473</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5883-7370</orcidid><orcidid>https://orcid.org/0000-0001-7162-509X</orcidid><orcidid>https://orcid.org/0000000158837370</orcidid><orcidid>https://orcid.org/000000017162509X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-01, Vol.38 (1), p.572-588
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2757176888
source IEEE Electronic Library (IEL) Journals
subjects Anomalies
Data models
Deep learning
Domains
Engineering
first principle
Mathematical models
Neural networks
Optimization
Parameter estimation
Physics
physics-informed neural networks
Power flow
smart grids
State of the art
Training
Training data
title Applications of Physics-Informed Neural Networks in Power Systems - A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Physics-Informed%20Neural%20Networks%20in%20Power%20Systems%20-%20A%20Review&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Bin&rft.aucorp=Univ.%20of%20North%20Carolina,%20Charlotte,%20NC%20(United%20States)&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=572&rft.epage=588&rft.pages=572-588&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3162473&rft_dat=%3Cproquest_osti_%3E2757176888%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2757176888&rft_id=info:pmid/&rft_ieee_id=9743327&rfr_iscdi=true