Loading…
Applications of Physics-Informed Neural Networks in Power Systems - A Review
The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, prod...
Saved in:
Published in: | IEEE transactions on power systems 2023-01, Vol.38 (1), p.572-588 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373 |
container_end_page | 588 |
container_issue | 1 |
container_start_page | 572 |
container_title | IEEE transactions on power systems |
container_volume | 38 |
creator | Huang, Bin Wang, Jianhui |
description | The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs. |
doi_str_mv | 10.1109/TPWRS.2022.3162473 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2757176888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743327</ieee_id><sourcerecordid>2757176888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00uh7sgz5mSYgPEqIEMC6bmXIbijAd20HCv3cQ4uos7ndObj6EbinpUUryx_nkczrrMcJYj1PJ-oqfoQ4VQmdEqvwcdYjWItO5IJfoKqUVIUS2hw4aD-p67W3R-FAlHByeLPfJ25SNKhfiBhb4DbaxWLfR7EL8SthXeBJ2EPFsnxrYJJzhAZ7Cj4fdNbpwxTrBzSm76OP5aT58zcbvL6PhYJxZzliTUaI0Z8RxuVBlwbmVpNS0b7USOQjCSiUcuJI7qwu3KJkFUUgiF5IqKzhXvIvuj7shNd4k6xuwSxuqCmxjWJ9qpUULPRyhOobvLaTGrMI2Vu1fhimhqJJa65ZiR8rGkFIEZ-roN0XcG0rMQa35U2sOas1JbVu6O5Y8APwXctXnnCn-C_d0c_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757176888</pqid></control><display><type>article</type><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Bin ; Wang, Jianhui</creator><creatorcontrib>Huang, Bin ; Wang, Jianhui ; Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><description>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3162473</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Data models ; Deep learning ; Domains ; Engineering ; first principle ; Mathematical models ; Neural networks ; Optimization ; Parameter estimation ; Physics ; physics-informed neural networks ; Power flow ; smart grids ; State of the art ; Training ; Training data</subject><ispartof>IEEE transactions on power systems, 2023-01, Vol.38 (1), p.572-588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</citedby><cites>FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</cites><orcidid>0000-0001-5883-7370 ; 0000-0001-7162-509X ; 0000000158837370 ; 000000017162509X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2418785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</description><subject>Anomalies</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Engineering</subject><subject>first principle</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>physics-informed neural networks</subject><subject>Power flow</subject><subject>smart grids</subject><subject>State of the art</subject><subject>Training</subject><subject>Training data</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYj-Ad00uh7sgz5mSYgPEqIEMC6bmXIbijAd20HCv3cQ4uos7ndObj6EbinpUUryx_nkczrrMcJYj1PJ-oqfoQ4VQmdEqvwcdYjWItO5IJfoKqUVIUS2hw4aD-p67W3R-FAlHByeLPfJ25SNKhfiBhb4DbaxWLfR7EL8SthXeBJ2EPFsnxrYJJzhAZ7Cj4fdNbpwxTrBzSm76OP5aT58zcbvL6PhYJxZzliTUaI0Z8RxuVBlwbmVpNS0b7USOQjCSiUcuJI7qwu3KJkFUUgiF5IqKzhXvIvuj7shNd4k6xuwSxuqCmxjWJ9qpUULPRyhOobvLaTGrMI2Vu1fhimhqJJa65ZiR8rGkFIEZ-roN0XcG0rMQa35U2sOas1JbVu6O5Y8APwXctXnnCn-C_d0c_s</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Huang, Bin</creator><creator>Wang, Jianhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5883-7370</orcidid><orcidid>https://orcid.org/0000-0001-7162-509X</orcidid><orcidid>https://orcid.org/0000000158837370</orcidid><orcidid>https://orcid.org/000000017162509X</orcidid></search><sort><creationdate>202301</creationdate><title>Applications of Physics-Informed Neural Networks in Power Systems - A Review</title><author>Huang, Bin ; Wang, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Engineering</topic><topic>first principle</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>physics-informed neural networks</topic><topic>Power flow</topic><topic>smart grids</topic><topic>State of the art</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Univ. of North Carolina, Charlotte, NC (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bin</au><au>Wang, Jianhui</au><aucorp>Univ. of North Carolina, Charlotte, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Physics-Informed Neural Networks in Power Systems - A Review</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>572</spage><epage>588</epage><pages>572-588</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3162473</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5883-7370</orcidid><orcidid>https://orcid.org/0000-0001-7162-509X</orcidid><orcidid>https://orcid.org/0000000158837370</orcidid><orcidid>https://orcid.org/000000017162509X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2023-01, Vol.38 (1), p.572-588 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_2757176888 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Anomalies Data models Deep learning Domains Engineering first principle Mathematical models Neural networks Optimization Parameter estimation Physics physics-informed neural networks Power flow smart grids State of the art Training Training data |
title | Applications of Physics-Informed Neural Networks in Power Systems - A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Physics-Informed%20Neural%20Networks%20in%20Power%20Systems%20-%20A%20Review&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Bin&rft.aucorp=Univ.%20of%20North%20Carolina,%20Charlotte,%20NC%20(United%20States)&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=572&rft.epage=588&rft.pages=572-588&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3162473&rft_dat=%3Cproquest_osti_%3E2757176888%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2757176888&rft_id=info:pmid/&rft_ieee_id=9743327&rfr_iscdi=true |