Loading…

Multiwinner Voting for Energy-Efficient Mobile Sink Rendezvous Selection in Wireless Sensor Network

Recent studies have demonstrated the advantage of applying mobile sink to prevent the energy-hole problem and prolong network lifetime in wireless sensor network. However, most researches treat the touring length constraint simply as the termination indicator of rendezvous point selection, which lea...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2022-12, Vol.2022, p.1-15
Main Authors: Wu, Xiaofeng, Chen, Zhuangqi, Zhong, Yi, Zhu, Hui, Chen, Xiao, Zhang, Pingjian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have demonstrated the advantage of applying mobile sink to prevent the energy-hole problem and prolong network lifetime in wireless sensor network. However, most researches treat the touring length constraint simply as the termination indicator of rendezvous point selection, which leads to a suboptimal solution. In this paper, we notice that the optimal set of rendezvous points is unknown but deterministic and propose to elect the set of rendezvous points directly with the multiwinner voting-based method instead of step-by-step selection. A weighted heuristic voter generation method is introduced to choose the representative voters, and a scoring rule is also well designed to obtain a satisfying solution. We also employ an iterative schema for the voting score update to refine the solution. We have conducted extensive experiments, and the results show that the proposed method can effectively prolong the network lifetime and achieve the competitive performance with other SOTA methods. Compared to the methods based on step-by-step selection, the proposed method increases the network lifetime by 23.2% and 10.5% on average under the balanced-distribution and unbalanced-distribution scenarios, respectively.
ISSN:1530-8669
1530-8677
DOI:10.1155/2022/8245306