Loading…
High-Q guided-mode resonance of a crossed grating with near-flat dispersion
Guided-mode resonances in diffraction gratings are manifested as peaks (dips) in reflection (transmission) spectra. Smaller resonance line widths (higher Q-factors) ensure stronger light-matter interactions and are beneficial for field-dependent physical processes. However, strong angular and spectr...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Guided-mode resonances in diffraction gratings are manifested as peaks (dips) in reflection (transmission) spectra. Smaller resonance line widths (higher Q-factors) ensure stronger light-matter interactions and are beneficial for field-dependent physical processes. However, strong angular and spectral dispersion are inherent to such high-Q resonances. We demonstrate that a class of high-Q resonant modes (Q-factor >1000) exhibiting extraordinarily weak dispersion can be excited in crossed gratings simultaneously with the modes with well-known nearly linear dispersion. Furthermore, we show that the polarization of the incoming light can be adjusted to engineer the dispersion of these modes, and strong to near-flat dispersion or vice-versa can be achieved by switching between two mutually orthogonal linear polarization states. We introduce a semi-analytical model to explain the underlying physics behind these observations and perform full-wave numerical simulations and experiments to support our theoretical conjecture. The results presented here will benefit all applications that rely on resonances in free-space-coupled geometries. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2212.12059 |