Loading…

Longitudinal assessment of hemodynamic alterations after mild traumatic brain injury in adolescents: Selected case study review

Alterations in the neurovasculature after traumatic brain injury (TBI) represents a significant sequelae. However, despite theoretical and empirical evidence supporting the near-ubiquity of vascular injury, its pathophysiology remains elusive. Although this has been shown for all grades of TBI, the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of concussion 2022-01, Vol.6
Main Authors: Thibeault, Corey M., Dorn, Amber Y., Radhakrishnan, Shankar, Hamilton, Robert B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alterations in the neurovasculature after traumatic brain injury (TBI) represents a significant sequelae. However, despite theoretical and empirical evidence supporting the near-ubiquity of vascular injury, its pathophysiology remains elusive. Although this has been shown for all grades of TBI, the vascular changes after injuries with the broad mild traumatic brain injuries (mTBI) classification, remain particularly difficult to describe. Our group has previously demonstrated hemodynamic alterations in mTBI by utilizing transcranial Doppler ultrasound and cerebrovascular reactivity in a cross-sectional study. That work identified a phasic progression of deviations over varying days post-injury. These phases were then characterized by a set of inverse models that provided a hypothetical process of hemodynamic dysfunction after mTBI. This model set provides a framework with the potential for guiding clinical treatment over the course of recovery. However, it is still unclear if individual patients will progress through the phases of dysfunction similar to that found at the population level. The work presented here explores six individual patients with high-density data collected during their post-injury recovery. Breath-hold index (BHI) was found to be the most robust feature related to mTBI longitudinally. All six subjects exhibited BHI recovery curves that followed the population model's progression. The changes in pulsatile features lacked the universality of BHI, but were present in subjects with higher self-reported symptom scores and longer periods of recovery. This work suggests neurovascular dysfunction after an mTBI may be a robust phenomenon. Additionally, the capabilities of TCD in capturing these changes highlights its potential for aiding clinicians in monitoring patient's recovery post mTBI.
ISSN:2059-7002
2059-7002
DOI:10.1177/20597002211065855