Loading…
Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China
The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol‐cloud‐radiation interaction is achieved to establish the first ve...
Saved in:
Published in: | Journal of advances in modeling earth systems 2022-12, Vol.14 (12), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323 |
---|---|
cites | cdi_FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | |
container_title | Journal of advances in modeling earth systems |
container_volume | 14 |
creator | Wang, H. Zhang, X. Y. Wang, P. Peng, Y. Zhang, W. J. Liu, Z. D. Han, C. Li, S. T. Wang, Y. Q. Che, H. Z. Huang, L. P. Liu, H. L. Zhang, L. Zhou, C. H. Ma, Z. S. Chen, F. F. Ma, X. Wu, X. J. Zhang, B. H. Shen, X. S. |
description | The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol‐cloud‐radiation interaction is achieved to establish the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol‐radiation, aerosol‐cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
Plain Language Summary
Double way atmospheric chemistry model considering complete aerosol‐radiation‐cloud interaction is the hot and difficult issue in climate, weather and air quality (AQ) modeling. Focusing on better prediction of haze/fog pollution in China, the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1 is established by online coupling the Chinese Meteorology Administration CUACE chemistry model with the updated operational mesoscale weather model GRAPES_Meso5.1 and the further completion of aerosol‐cloud‐radiation interaction in it. The meteorology impacts on haze/fog prediction including PM2.5 and visibility is discussed. The impacts of aerosol‐cloud interaction (ACI), aerosol |
doi_str_mv | 10.1029/2022MS003222 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758460405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758460405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhCMEEqWw4wCW2PbHdhynYRdC-oMaUVFKl5HjvNJUaRJst6isOAJLzsdJCCpIXbGaGb1Pb6SxrEuCOwRTr0sxpdEUY5tSemQ1iMdomzLOjw_8qXWm9Qpjzjl1GtZnsIR1po3afb1_zEGYJSg0KgwoIQ2kKCpTyNF0pw2s0eDBn4TTOAJdOh3SDWZ-EKJgjp5IB1-jW9hCXlZrKEwLhVuRb4TJygKJIkV-VeWZ3OesQDdg6gY0FG_Q7ZfPaKIgzeTfNVhmhTi3ThYi13Dxq01r1g8fg2F7fD8YBf64LW3msHZiY04SoFyCBAEO7iU0xT0MjLEEbII9nvYokbw2xHMXnpMkC-m5Lnhp6tnUblpX-7-VKl82oE28KjeqqCtj6jo9xjHDTk219pRUpdYKFnGlsrVQu5jg-Gf7-HD7Grf3-GuWw-5fNr7zo5AS12H2NxwnhNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758460405</pqid></control><display><type>article</type><title>Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wang, H. ; Zhang, X. Y. ; Wang, P. ; Peng, Y. ; Zhang, W. J. ; Liu, Z. D. ; Han, C. ; Li, S. T. ; Wang, Y. Q. ; Che, H. Z. ; Huang, L. P. ; Liu, H. L. ; Zhang, L. ; Zhou, C. H. ; Ma, Z. S. ; Chen, F. F. ; Ma, X. ; Wu, X. J. ; Zhang, B. H. ; Shen, X. S.</creator><creatorcontrib>Wang, H. ; Zhang, X. Y. ; Wang, P. ; Peng, Y. ; Zhang, W. J. ; Liu, Z. D. ; Han, C. ; Li, S. T. ; Wang, Y. Q. ; Che, H. Z. ; Huang, L. P. ; Liu, H. L. ; Zhang, L. ; Zhou, C. H. ; Ma, Z. S. ; Chen, F. F. ; Ma, X. ; Wu, X. J. ; Zhang, B. H. ; Shen, X. S.</creatorcontrib><description>The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol‐cloud‐radiation interaction is achieved to establish the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol‐radiation, aerosol‐cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
Plain Language Summary
Double way atmospheric chemistry model considering complete aerosol‐radiation‐cloud interaction is the hot and difficult issue in climate, weather and air quality (AQ) modeling. Focusing on better prediction of haze/fog pollution in China, the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1 is established by online coupling the Chinese Meteorology Administration CUACE chemistry model with the updated operational mesoscale weather model GRAPES_Meso5.1 and the further completion of aerosol‐cloud‐radiation interaction in it. The meteorology impacts on haze/fog prediction including PM2.5 and visibility is discussed. The impacts of aerosol‐cloud interaction (ACI), aerosol radiation interaction (ARI) and the both (CWI) on haze/fog prediction and mesoscale NWP is further studied. The study results shows that the important impacts of relative humidity on high PM2.5 and low visibility and the improving of PM2.5, low visibility prediction and NWP by ARI, ACI and CWI during haze/fog episode, indicating the importance of CW model in better AQ prediction and NWP in polluted region.
Key Points
An online chemistry‐weather (CW) interacted GRAPES_Meso5.1/Chinese Unified Atmospheric Chemistry Environment CW V1.0 model with aerosol‐radiation‐cloud interaction is established
Single way model shows basic reasonable haze/fog prediction including visibility and PM2.5 in most polluted subregions in China
CW Interaction improves PM2.5, visibility and numerical weather prediction from surface to upper troposphere to varying degree</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1029/2022MS003222</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>aerosol cloud interaction ; Aerosol effects ; aerosol radiation interaction ; Aerosols ; Air quality ; Air quality models ; Atmosphere ; Atmospheric chemistry ; chemistry‐weather interaction ; Clouds ; Feedback ; Fog ; Haze ; haze‐fog prediction ; Low visibility ; Meteorology ; Modelling ; numerical weather prediction ; Particulate matter ; Physics ; Pollution ; Precipitation ; Prediction models ; Radiation ; Radiation-cloud interactions ; Relative humidity ; Sea level ; Sea level pressure ; Troposphere ; Upper troposphere ; Valleys ; Visibility ; visibility prediction ; Weather ; Weather forecasting ; Wind speed</subject><ispartof>Journal of advances in modeling earth systems, 2022-12, Vol.14 (12), p.n/a</ispartof><rights>2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323</citedby><cites>FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323</cites><orcidid>0000-0001-8098-4473 ; 0000-0002-3475-7701 ; 0000-0001-5465-9845 ; 0000-0002-0325-1820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2758460405/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2758460405?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Zhang, X. Y.</creatorcontrib><creatorcontrib>Wang, P.</creatorcontrib><creatorcontrib>Peng, Y.</creatorcontrib><creatorcontrib>Zhang, W. J.</creatorcontrib><creatorcontrib>Liu, Z. D.</creatorcontrib><creatorcontrib>Han, C.</creatorcontrib><creatorcontrib>Li, S. T.</creatorcontrib><creatorcontrib>Wang, Y. Q.</creatorcontrib><creatorcontrib>Che, H. Z.</creatorcontrib><creatorcontrib>Huang, L. P.</creatorcontrib><creatorcontrib>Liu, H. L.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zhou, C. H.</creatorcontrib><creatorcontrib>Ma, Z. S.</creatorcontrib><creatorcontrib>Chen, F. F.</creatorcontrib><creatorcontrib>Ma, X.</creatorcontrib><creatorcontrib>Wu, X. J.</creatorcontrib><creatorcontrib>Zhang, B. H.</creatorcontrib><creatorcontrib>Shen, X. S.</creatorcontrib><title>Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China</title><title>Journal of advances in modeling earth systems</title><description>The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol‐cloud‐radiation interaction is achieved to establish the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol‐radiation, aerosol‐cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
Plain Language Summary
Double way atmospheric chemistry model considering complete aerosol‐radiation‐cloud interaction is the hot and difficult issue in climate, weather and air quality (AQ) modeling. Focusing on better prediction of haze/fog pollution in China, the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1 is established by online coupling the Chinese Meteorology Administration CUACE chemistry model with the updated operational mesoscale weather model GRAPES_Meso5.1 and the further completion of aerosol‐cloud‐radiation interaction in it. The meteorology impacts on haze/fog prediction including PM2.5 and visibility is discussed. The impacts of aerosol‐cloud interaction (ACI), aerosol radiation interaction (ARI) and the both (CWI) on haze/fog prediction and mesoscale NWP is further studied. The study results shows that the important impacts of relative humidity on high PM2.5 and low visibility and the improving of PM2.5, low visibility prediction and NWP by ARI, ACI and CWI during haze/fog episode, indicating the importance of CW model in better AQ prediction and NWP in polluted region.
Key Points
An online chemistry‐weather (CW) interacted GRAPES_Meso5.1/Chinese Unified Atmospheric Chemistry Environment CW V1.0 model with aerosol‐radiation‐cloud interaction is established
Single way model shows basic reasonable haze/fog prediction including visibility and PM2.5 in most polluted subregions in China
CW Interaction improves PM2.5, visibility and numerical weather prediction from surface to upper troposphere to varying degree</description><subject>aerosol cloud interaction</subject><subject>Aerosol effects</subject><subject>aerosol radiation interaction</subject><subject>Aerosols</subject><subject>Air quality</subject><subject>Air quality models</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>chemistry‐weather interaction</subject><subject>Clouds</subject><subject>Feedback</subject><subject>Fog</subject><subject>Haze</subject><subject>haze‐fog prediction</subject><subject>Low visibility</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>numerical weather prediction</subject><subject>Particulate matter</subject><subject>Physics</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Radiation-cloud interactions</subject><subject>Relative humidity</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Valleys</subject><subject>Visibility</subject><subject>visibility prediction</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind speed</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kE1OwzAUhCMEEqWw4wCW2PbHdhynYRdC-oMaUVFKl5HjvNJUaRJst6isOAJLzsdJCCpIXbGaGb1Pb6SxrEuCOwRTr0sxpdEUY5tSemQ1iMdomzLOjw_8qXWm9Qpjzjl1GtZnsIR1po3afb1_zEGYJSg0KgwoIQ2kKCpTyNF0pw2s0eDBn4TTOAJdOh3SDWZ-EKJgjp5IB1-jW9hCXlZrKEwLhVuRb4TJygKJIkV-VeWZ3OesQDdg6gY0FG_Q7ZfPaKIgzeTfNVhmhTi3ThYi13Dxq01r1g8fg2F7fD8YBf64LW3msHZiY04SoFyCBAEO7iU0xT0MjLEEbII9nvYokbw2xHMXnpMkC-m5Lnhp6tnUblpX-7-VKl82oE28KjeqqCtj6jo9xjHDTk219pRUpdYKFnGlsrVQu5jg-Gf7-HD7Grf3-GuWw-5fNr7zo5AS12H2NxwnhNc</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Wang, H.</creator><creator>Zhang, X. Y.</creator><creator>Wang, P.</creator><creator>Peng, Y.</creator><creator>Zhang, W. J.</creator><creator>Liu, Z. D.</creator><creator>Han, C.</creator><creator>Li, S. T.</creator><creator>Wang, Y. Q.</creator><creator>Che, H. Z.</creator><creator>Huang, L. P.</creator><creator>Liu, H. L.</creator><creator>Zhang, L.</creator><creator>Zhou, C. H.</creator><creator>Ma, Z. S.</creator><creator>Chen, F. F.</creator><creator>Ma, X.</creator><creator>Wu, X. J.</creator><creator>Zhang, B. H.</creator><creator>Shen, X. S.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8098-4473</orcidid><orcidid>https://orcid.org/0000-0002-3475-7701</orcidid><orcidid>https://orcid.org/0000-0001-5465-9845</orcidid><orcidid>https://orcid.org/0000-0002-0325-1820</orcidid></search><sort><creationdate>202212</creationdate><title>Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China</title><author>Wang, H. ; Zhang, X. Y. ; Wang, P. ; Peng, Y. ; Zhang, W. J. ; Liu, Z. D. ; Han, C. ; Li, S. T. ; Wang, Y. Q. ; Che, H. Z. ; Huang, L. P. ; Liu, H. L. ; Zhang, L. ; Zhou, C. H. ; Ma, Z. S. ; Chen, F. F. ; Ma, X. ; Wu, X. J. ; Zhang, B. H. ; Shen, X. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aerosol cloud interaction</topic><topic>Aerosol effects</topic><topic>aerosol radiation interaction</topic><topic>Aerosols</topic><topic>Air quality</topic><topic>Air quality models</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>chemistry‐weather interaction</topic><topic>Clouds</topic><topic>Feedback</topic><topic>Fog</topic><topic>Haze</topic><topic>haze‐fog prediction</topic><topic>Low visibility</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>numerical weather prediction</topic><topic>Particulate matter</topic><topic>Physics</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Radiation-cloud interactions</topic><topic>Relative humidity</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Valleys</topic><topic>Visibility</topic><topic>visibility prediction</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Zhang, X. Y.</creatorcontrib><creatorcontrib>Wang, P.</creatorcontrib><creatorcontrib>Peng, Y.</creatorcontrib><creatorcontrib>Zhang, W. J.</creatorcontrib><creatorcontrib>Liu, Z. D.</creatorcontrib><creatorcontrib>Han, C.</creatorcontrib><creatorcontrib>Li, S. T.</creatorcontrib><creatorcontrib>Wang, Y. Q.</creatorcontrib><creatorcontrib>Che, H. Z.</creatorcontrib><creatorcontrib>Huang, L. P.</creatorcontrib><creatorcontrib>Liu, H. L.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Zhou, C. H.</creatorcontrib><creatorcontrib>Ma, Z. S.</creatorcontrib><creatorcontrib>Chen, F. F.</creatorcontrib><creatorcontrib>Ma, X.</creatorcontrib><creatorcontrib>Wu, X. J.</creatorcontrib><creatorcontrib>Zhang, B. H.</creatorcontrib><creatorcontrib>Shen, X. S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H.</au><au>Zhang, X. Y.</au><au>Wang, P.</au><au>Peng, Y.</au><au>Zhang, W. J.</au><au>Liu, Z. D.</au><au>Han, C.</au><au>Li, S. T.</au><au>Wang, Y. Q.</au><au>Che, H. Z.</au><au>Huang, L. P.</au><au>Liu, H. L.</au><au>Zhang, L.</au><au>Zhou, C. H.</au><au>Ma, Z. S.</au><au>Chen, F. F.</au><au>Ma, X.</au><au>Wu, X. J.</au><au>Zhang, B. H.</au><au>Shen, X. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2022-12</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><epage>n/a</epage><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>The Chinese Meteorology Administration chemistry model Chinese Unified Atmospheric Chemistry Environment (CUACE) is online integrated into the mesoscale operational numerical weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol‐cloud‐radiation interaction is achieved to establish the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1. The most polluted winter 2016–2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol‐radiation, aerosol‐cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM2.5 peaks and the positive bias of visibility valleys. The improvement of 5 and 3 km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, RH, temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI's improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.
Plain Language Summary
Double way atmospheric chemistry model considering complete aerosol‐radiation‐cloud interaction is the hot and difficult issue in climate, weather and air quality (AQ) modeling. Focusing on better prediction of haze/fog pollution in China, the first version (V1) of chemistry‐weather (CW) interacted model GRAPES‐Meso5.1/CUACE CW V1 is established by online coupling the Chinese Meteorology Administration CUACE chemistry model with the updated operational mesoscale weather model GRAPES_Meso5.1 and the further completion of aerosol‐cloud‐radiation interaction in it. The meteorology impacts on haze/fog prediction including PM2.5 and visibility is discussed. The impacts of aerosol‐cloud interaction (ACI), aerosol radiation interaction (ARI) and the both (CWI) on haze/fog prediction and mesoscale NWP is further studied. The study results shows that the important impacts of relative humidity on high PM2.5 and low visibility and the improving of PM2.5, low visibility prediction and NWP by ARI, ACI and CWI during haze/fog episode, indicating the importance of CW model in better AQ prediction and NWP in polluted region.
Key Points
An online chemistry‐weather (CW) interacted GRAPES_Meso5.1/Chinese Unified Atmospheric Chemistry Environment CW V1.0 model with aerosol‐radiation‐cloud interaction is established
Single way model shows basic reasonable haze/fog prediction including visibility and PM2.5 in most polluted subregions in China
CW Interaction improves PM2.5, visibility and numerical weather prediction from surface to upper troposphere to varying degree</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2022MS003222</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8098-4473</orcidid><orcidid>https://orcid.org/0000-0002-3475-7701</orcidid><orcidid>https://orcid.org/0000-0001-5465-9845</orcidid><orcidid>https://orcid.org/0000-0002-0325-1820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-2466 |
ispartof | Journal of advances in modeling earth systems, 2022-12, Vol.14 (12), p.n/a |
issn | 1942-2466 1942-2466 |
language | eng |
recordid | cdi_proquest_journals_2758460405 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | aerosol cloud interaction Aerosol effects aerosol radiation interaction Aerosols Air quality Air quality models Atmosphere Atmospheric chemistry chemistry‐weather interaction Clouds Feedback Fog Haze haze‐fog prediction Low visibility Meteorology Modelling numerical weather prediction Particulate matter Physics Pollution Precipitation Prediction models Radiation Radiation-cloud interactions Relative humidity Sea level Sea level pressure Troposphere Upper troposphere Valleys Visibility visibility prediction Weather Weather forecasting Wind speed |
title | Chemistry‐Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/Fog Prediction in China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%E2%80%90Weather%20Interacted%20Model%20System%20GRAPES_Meso5.1/CUACE%20CW%20V1.0:%20Development,%20Evaluation%20and%20Application%20in%20Better%20Haze/Fog%20Prediction%20in%20China&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Wang,%20H.&rft.date=2022-12&rft.volume=14&rft.issue=12&rft.epage=n/a&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1029/2022MS003222&rft_dat=%3Cproquest_cross%3E2758460405%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3454-b3061be26ceceae508b2d080e444be31096d821c6096197f95bbfc977e9dd9323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758460405&rft_id=info:pmid/&rfr_iscdi=true |