Loading…

An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application

In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. O...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2022-09, Vol.43 (9), p.2525-2543
Main Authors: Kumar, Devendra, Sharma, Vikas Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3
cites cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3
container_end_page 2543
container_issue 9
container_start_page 2525
container_title Lobachevskii journal of mathematics
container_volume 43
creator Kumar, Devendra
Sharma, Vikas Kumar
description In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.
doi_str_mv 10.1134/S1995080222120186
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758642947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758642947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ547cSxuUWlFKQCEj8HTpGTbEqqNgm2q8Lb41AkDojT7mq-mZWGkFNg5wAivngCrROmGOccOAMl98gIFKhIa8n3wx7kaNAPyZFzSxZAKeWIvGYtnX54bF3TtbSrw9F3Lba-MR4rOjPrtaFXjfO2KTY-MJc0o_e4pY-4sOi-XXddhSu6bfwbzfp-1ZRmAI_JQW1WDk9-5pi8XE-fJzfR_GF2O8nmUclT7SOoRaUkQx1jXRRVUgBynopKS5EYY0TMClUDpMCh1LWuygQBlCoMSEyFLMWYnO1ye9u9b9D5fNltbBte5jxNlIy5jtNAwY4qbeecxTrvbbM29jMHlg8N5n8aDB6-87jAtgu0v8n_m74AEAxyJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758642947</pqid></control><display><type>article</type><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><source>Springer Nature</source><creator>Kumar, Devendra ; Sharma, Vikas Kumar</creator><creatorcontrib>Kumar, Devendra ; Sharma, Vikas Kumar</creatorcontrib><description>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222120186</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Algebra ; Analysis ; Differential equations ; Geometry ; Kurtosis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimation ; Probability distribution functions ; Probability Theory and Stochastic Processes ; Quantiles ; Regression models ; Statistical analysis</subject><ispartof>Lobachevskii journal of mathematics, 2022-09, Vol.43 (9), p.2525-2543</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</citedby><cites>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Sharma, Vikas Kumar</creatorcontrib><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</description><subject>Adequacy</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Kurtosis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Probability distribution functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantiles</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ547cSxuUWlFKQCEj8HTpGTbEqqNgm2q8Lb41AkDojT7mq-mZWGkFNg5wAivngCrROmGOccOAMl98gIFKhIa8n3wx7kaNAPyZFzSxZAKeWIvGYtnX54bF3TtbSrw9F3Lba-MR4rOjPrtaFXjfO2KTY-MJc0o_e4pY-4sOi-XXddhSu6bfwbzfp-1ZRmAI_JQW1WDk9-5pi8XE-fJzfR_GF2O8nmUclT7SOoRaUkQx1jXRRVUgBynopKS5EYY0TMClUDpMCh1LWuygQBlCoMSEyFLMWYnO1ye9u9b9D5fNltbBte5jxNlIy5jtNAwY4qbeecxTrvbbM29jMHlg8N5n8aDB6-87jAtgu0v8n_m74AEAxyJw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kumar, Devendra</creator><creator>Sharma, Vikas Kumar</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><author>Kumar, Devendra ; Sharma, Vikas Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Kurtosis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Probability distribution functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantiles</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Sharma, Vikas Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Devendra</au><au>Sharma, Vikas Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>43</volume><issue>9</issue><spage>2525</spage><epage>2543</epage><pages>2525-2543</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222120186</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022-09, Vol.43 (9), p.2525-2543
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2758642947
source Springer Nature
subjects Adequacy
Algebra
Analysis
Differential equations
Geometry
Kurtosis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Maximum likelihood estimation
Probability distribution functions
Probability Theory and Stochastic Processes
Quantiles
Regression models
Statistical analysis
title An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extension%20of%20Exponentiated%20Gamma%20Distribution:%20A%20New%20Regression%20Model%20with%20Application&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Kumar,%20Devendra&rft.date=2022-09-01&rft.volume=43&rft.issue=9&rft.spage=2525&rft.epage=2543&rft.pages=2525-2543&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222120186&rft_dat=%3Cproquest_cross%3E2758642947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758642947&rft_id=info:pmid/&rfr_iscdi=true