Loading…
An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application
In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. O...
Saved in:
Published in: | Lobachevskii journal of mathematics 2022-09, Vol.43 (9), p.2525-2543 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3 |
container_end_page | 2543 |
container_issue | 9 |
container_start_page | 2525 |
container_title | Lobachevskii journal of mathematics |
container_volume | 43 |
creator | Kumar, Devendra Sharma, Vikas Kumar |
description | In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees. |
doi_str_mv | 10.1134/S1995080222120186 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758642947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758642947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ547cSxuUWlFKQCEj8HTpGTbEqqNgm2q8Lb41AkDojT7mq-mZWGkFNg5wAivngCrROmGOccOAMl98gIFKhIa8n3wx7kaNAPyZFzSxZAKeWIvGYtnX54bF3TtbSrw9F3Lba-MR4rOjPrtaFXjfO2KTY-MJc0o_e4pY-4sOi-XXddhSu6bfwbzfp-1ZRmAI_JQW1WDk9-5pi8XE-fJzfR_GF2O8nmUclT7SOoRaUkQx1jXRRVUgBynopKS5EYY0TMClUDpMCh1LWuygQBlCoMSEyFLMWYnO1ye9u9b9D5fNltbBte5jxNlIy5jtNAwY4qbeecxTrvbbM29jMHlg8N5n8aDB6-87jAtgu0v8n_m74AEAxyJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758642947</pqid></control><display><type>article</type><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><source>Springer Nature</source><creator>Kumar, Devendra ; Sharma, Vikas Kumar</creator><creatorcontrib>Kumar, Devendra ; Sharma, Vikas Kumar</creatorcontrib><description>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222120186</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Algebra ; Analysis ; Differential equations ; Geometry ; Kurtosis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimation ; Probability distribution functions ; Probability Theory and Stochastic Processes ; Quantiles ; Regression models ; Statistical analysis</subject><ispartof>Lobachevskii journal of mathematics, 2022-09, Vol.43 (9), p.2525-2543</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</citedby><cites>FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Sharma, Vikas Kumar</creatorcontrib><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</description><subject>Adequacy</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Kurtosis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Probability distribution functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantiles</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ547cSxuUWlFKQCEj8HTpGTbEqqNgm2q8Lb41AkDojT7mq-mZWGkFNg5wAivngCrROmGOccOAMl98gIFKhIa8n3wx7kaNAPyZFzSxZAKeWIvGYtnX54bF3TtbSrw9F3Lba-MR4rOjPrtaFXjfO2KTY-MJc0o_e4pY-4sOi-XXddhSu6bfwbzfp-1ZRmAI_JQW1WDk9-5pi8XE-fJzfR_GF2O8nmUclT7SOoRaUkQx1jXRRVUgBynopKS5EYY0TMClUDpMCh1LWuygQBlCoMSEyFLMWYnO1ye9u9b9D5fNltbBte5jxNlIy5jtNAwY4qbeecxTrvbbM29jMHlg8N5n8aDB6-87jAtgu0v8n_m74AEAxyJw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kumar, Devendra</creator><creator>Sharma, Vikas Kumar</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</title><author>Kumar, Devendra ; Sharma, Vikas Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Kurtosis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Probability distribution functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantiles</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Sharma, Vikas Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Devendra</au><au>Sharma, Vikas Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>43</volume><issue>9</issue><spage>2525</spage><epage>2543</epage><pages>2525-2543</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we introduce a two parameter extension of exponentiated gamma distribution. We explicitly derive the closed form expressions of the moments, mode and quantiles of the proposed distribution. L-moments and coefficients of skewness and kurtosis are obtained using the quantile function. Other important properties including identifiability, entropy, stochastic orderings, stress-strength reliability and differential equations associated with the distribution are also discussed. We briefly describe different estimation procedures namely, the method of maximum likelihood estimation, moment estimation, maximum product of spacings estimation, ordinary and weighted least squares estimation, and Cramér–von-Mises estimation along with an extensive simulation study for comparing their performance. An application of modeling trees growth data is presented to show the adequacy of the proposed distribution over the distributions existing in the literature. A parametric regression model based on the proposed distribution is introduced and used to establish a regression model for the volume, diameter and height of the trees.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222120186</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2022-09, Vol.43 (9), p.2525-2543 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2758642947 |
source | Springer Nature |
subjects | Adequacy Algebra Analysis Differential equations Geometry Kurtosis Mathematical Logic and Foundations Mathematics Mathematics and Statistics Maximum likelihood estimation Probability distribution functions Probability Theory and Stochastic Processes Quantiles Regression models Statistical analysis |
title | An Extension of Exponentiated Gamma Distribution: A New Regression Model with Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extension%20of%20Exponentiated%20Gamma%20Distribution:%20A%20New%20Regression%20Model%20with%20Application&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Kumar,%20Devendra&rft.date=2022-09-01&rft.volume=43&rft.issue=9&rft.spage=2525&rft.epage=2543&rft.pages=2525-2543&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222120186&rft_dat=%3Cproquest_cross%3E2758642947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-1f3d860e94efbbd5b1e2273d9635aaa340b8f117121c9f9dc5e1188ba16e736c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758642947&rft_id=info:pmid/&rfr_iscdi=true |