Loading…

Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST

We introduce GWFAST , a novel Fisher-matrix code for gravitational-wave studies, tuned toward third-generation gravitational-wave detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE). We use it to perform a comprehensive study of the capabilities of ET alone, and of a network made by E...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2022-12, Vol.941 (2), p.208
Main Authors: Iacovelli, Francesco, Mancarella, Michele, Foffa, Stefano, Maggiore, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3
cites cdi_FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3
container_end_page
container_issue 2
container_start_page 208
container_title The Astrophysical journal
container_volume 941
creator Iacovelli, Francesco
Mancarella, Michele
Foffa, Stefano
Maggiore, Michele
description We introduce GWFAST , a novel Fisher-matrix code for gravitational-wave studies, tuned toward third-generation gravitational-wave detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE). We use it to perform a comprehensive study of the capabilities of ET alone, and of a network made by ET and two CE detectors, as well as to provide forecasts for the forthcoming O4 run of the LIGO-Virgo-KAGRA (LVK) collaboration. We consider binary neutron stars, binary black holes, and neutron star–black hole binaries, and compute basic metrics such as the distribution of signal-to-noise ratio (S/N), the accuracy in the reconstruction of various parameters (including distance, sky localization, masses, spins, and, for neutron stars, tidal deformabilities), and the redshift distribution of the detections for different thresholds in S/N and different levels of accuracy in localization and distance measurement. We examine the expected distribution and properties of golden events , with especially large values of the S/N. We also pay special attention to the dependence of the results on astrophysical uncertainties and on various technical details (such as choice of waveforms, or the threshold in S/N), and we compare with other Fisher codes in the literature. In the companion paper Iacovelli et al., we discuss the technical aspects of the code. Together with this paper, we publicly release the code GWFAST , ( https://github.com/CosmoStatGW/gwfast ) and the library WF4Py ( https://github.com/CosmoStatGW/WF4Py ) implementing state-of-the-art gravitational-wave waveforms in pure Python .
doi_str_mv 10.3847/1538-4357/ac9cd4
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2758657144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758657144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM0ZiJdSO7dgZq0ILUiUGgmCzXhyndVXqYLtF_Huaho-J6flZ5149HYQuCb6hkokR4VSmjHIxAl3omh2hwe_XMRpgjFmaU_F6is5CWHVrVhQDVE-dNxpCtJtFEpcmuTXR6GjdJplAC5Vd22hNSFyTlEvr63RhNsbDAZh52Nl4eMM6_YDdT9r5kDyHrnH2Mh0_lefopIF1MBffc4jK6V05uU_nj7OHyXieaspxTGsODOumIblgkleSapOBkFVBgNOqqpmBWjcMs0JonnOekdpoXEAuKc4qoEN01de23r1vTYhq5bZ-f1tQmeAy54IwtqdwT2nvQvCmUa23b-A_FcGqU6k6b6rzpnqV-8h1H7Gu_ev8F_8C7yx2jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758657144</pqid></control><display><type>article</type><title>Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST</title><source>EZB Free E-Journals</source><creator>Iacovelli, Francesco ; Mancarella, Michele ; Foffa, Stefano ; Maggiore, Michele</creator><creatorcontrib>Iacovelli, Francesco ; Mancarella, Michele ; Foffa, Stefano ; Maggiore, Michele</creatorcontrib><description>We introduce GWFAST , a novel Fisher-matrix code for gravitational-wave studies, tuned toward third-generation gravitational-wave detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE). We use it to perform a comprehensive study of the capabilities of ET alone, and of a network made by ET and two CE detectors, as well as to provide forecasts for the forthcoming O4 run of the LIGO-Virgo-KAGRA (LVK) collaboration. We consider binary neutron stars, binary black holes, and neutron star–black hole binaries, and compute basic metrics such as the distribution of signal-to-noise ratio (S/N), the accuracy in the reconstruction of various parameters (including distance, sky localization, masses, spins, and, for neutron stars, tidal deformabilities), and the redshift distribution of the detections for different thresholds in S/N and different levels of accuracy in localization and distance measurement. We examine the expected distribution and properties of golden events , with especially large values of the S/N. We also pay special attention to the dependence of the results on astrophysical uncertainties and on various technical details (such as choice of waveforms, or the threshold in S/N), and we compare with other Fisher codes in the literature. In the companion paper Iacovelli et al., we discuss the technical aspects of the code. Together with this paper, we publicly release the code GWFAST , ( https://github.com/CosmoStatGW/gwfast ) and the library WF4Py ( https://github.com/CosmoStatGW/WF4Py ) implementing state-of-the-art gravitational-wave waveforms in pure Python .</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac9cd4</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accuracy ; Astrophysics ; Binary stars ; Black holes ; Companion stars ; Detectors ; Distance measurement ; Fisher’s Information ; Gravitational wave astronomy ; Gravitational wave detectors ; Gravitational wave sources ; Gravitational waves ; Localization ; Matrix codes ; Neutron stars ; Neutrons ; Red shift ; Sensors ; Signal to noise ratio ; Waveforms</subject><ispartof>The Astrophysical journal, 2022-12, Vol.941 (2), p.208</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3</citedby><cites>FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3</cites><orcidid>0000-0002-4875-5862 ; 0000-0001-7348-047X ; 0000-0002-0675-508X ; 0000-0002-4530-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iacovelli, Francesco</creatorcontrib><creatorcontrib>Mancarella, Michele</creatorcontrib><creatorcontrib>Foffa, Stefano</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><title>Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We introduce GWFAST , a novel Fisher-matrix code for gravitational-wave studies, tuned toward third-generation gravitational-wave detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE). We use it to perform a comprehensive study of the capabilities of ET alone, and of a network made by ET and two CE detectors, as well as to provide forecasts for the forthcoming O4 run of the LIGO-Virgo-KAGRA (LVK) collaboration. We consider binary neutron stars, binary black holes, and neutron star–black hole binaries, and compute basic metrics such as the distribution of signal-to-noise ratio (S/N), the accuracy in the reconstruction of various parameters (including distance, sky localization, masses, spins, and, for neutron stars, tidal deformabilities), and the redshift distribution of the detections for different thresholds in S/N and different levels of accuracy in localization and distance measurement. We examine the expected distribution and properties of golden events , with especially large values of the S/N. We also pay special attention to the dependence of the results on astrophysical uncertainties and on various technical details (such as choice of waveforms, or the threshold in S/N), and we compare with other Fisher codes in the literature. In the companion paper Iacovelli et al., we discuss the technical aspects of the code. Together with this paper, we publicly release the code GWFAST , ( https://github.com/CosmoStatGW/gwfast ) and the library WF4Py ( https://github.com/CosmoStatGW/WF4Py ) implementing state-of-the-art gravitational-wave waveforms in pure Python .</description><subject>Accuracy</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Black holes</subject><subject>Companion stars</subject><subject>Detectors</subject><subject>Distance measurement</subject><subject>Fisher’s Information</subject><subject>Gravitational wave astronomy</subject><subject>Gravitational wave detectors</subject><subject>Gravitational wave sources</subject><subject>Gravitational waves</subject><subject>Localization</subject><subject>Matrix codes</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Red shift</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Waveforms</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM0ZiJdSO7dgZq0ILUiUGgmCzXhyndVXqYLtF_Huaho-J6flZ5149HYQuCb6hkokR4VSmjHIxAl3omh2hwe_XMRpgjFmaU_F6is5CWHVrVhQDVE-dNxpCtJtFEpcmuTXR6GjdJplAC5Vd22hNSFyTlEvr63RhNsbDAZh52Nl4eMM6_YDdT9r5kDyHrnH2Mh0_lefopIF1MBffc4jK6V05uU_nj7OHyXieaspxTGsODOumIblgkleSapOBkFVBgNOqqpmBWjcMs0JonnOekdpoXEAuKc4qoEN01de23r1vTYhq5bZ-f1tQmeAy54IwtqdwT2nvQvCmUa23b-A_FcGqU6k6b6rzpnqV-8h1H7Gu_ev8F_8C7yx2jw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Iacovelli, Francesco</creator><creator>Mancarella, Michele</creator><creator>Foffa, Stefano</creator><creator>Maggiore, Michele</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4875-5862</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid><orcidid>https://orcid.org/0000-0002-0675-508X</orcidid><orcidid>https://orcid.org/0000-0002-4530-3051</orcidid></search><sort><creationdate>20221201</creationdate><title>Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST</title><author>Iacovelli, Francesco ; Mancarella, Michele ; Foffa, Stefano ; Maggiore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Black holes</topic><topic>Companion stars</topic><topic>Detectors</topic><topic>Distance measurement</topic><topic>Fisher’s Information</topic><topic>Gravitational wave astronomy</topic><topic>Gravitational wave detectors</topic><topic>Gravitational wave sources</topic><topic>Gravitational waves</topic><topic>Localization</topic><topic>Matrix codes</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Red shift</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacovelli, Francesco</creatorcontrib><creatorcontrib>Mancarella, Michele</creatorcontrib><creatorcontrib>Foffa, Stefano</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacovelli, Francesco</au><au>Mancarella, Michele</au><au>Foffa, Stefano</au><au>Maggiore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>941</volume><issue>2</issue><spage>208</spage><pages>208-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We introduce GWFAST , a novel Fisher-matrix code for gravitational-wave studies, tuned toward third-generation gravitational-wave detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE). We use it to perform a comprehensive study of the capabilities of ET alone, and of a network made by ET and two CE detectors, as well as to provide forecasts for the forthcoming O4 run of the LIGO-Virgo-KAGRA (LVK) collaboration. We consider binary neutron stars, binary black holes, and neutron star–black hole binaries, and compute basic metrics such as the distribution of signal-to-noise ratio (S/N), the accuracy in the reconstruction of various parameters (including distance, sky localization, masses, spins, and, for neutron stars, tidal deformabilities), and the redshift distribution of the detections for different thresholds in S/N and different levels of accuracy in localization and distance measurement. We examine the expected distribution and properties of golden events , with especially large values of the S/N. We also pay special attention to the dependence of the results on astrophysical uncertainties and on various technical details (such as choice of waveforms, or the threshold in S/N), and we compare with other Fisher codes in the literature. In the companion paper Iacovelli et al., we discuss the technical aspects of the code. Together with this paper, we publicly release the code GWFAST , ( https://github.com/CosmoStatGW/gwfast ) and the library WF4Py ( https://github.com/CosmoStatGW/WF4Py ) implementing state-of-the-art gravitational-wave waveforms in pure Python .</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac9cd4</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0002-4875-5862</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid><orcidid>https://orcid.org/0000-0002-0675-508X</orcidid><orcidid>https://orcid.org/0000-0002-4530-3051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-12, Vol.941 (2), p.208
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2758657144
source EZB Free E-Journals
subjects Accuracy
Astrophysics
Binary stars
Black holes
Companion stars
Detectors
Distance measurement
Fisher’s Information
Gravitational wave astronomy
Gravitational wave detectors
Gravitational wave sources
Gravitational waves
Localization
Matrix codes
Neutron stars
Neutrons
Red shift
Sensors
Signal to noise ratio
Waveforms
title Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20the%20Detection%20Capabilities%20of%20Third-generation%20Gravitational-wave%20Detectors%20Using%20GWFAST&rft.jtitle=The%20Astrophysical%20journal&rft.au=Iacovelli,%20Francesco&rft.date=2022-12-01&rft.volume=941&rft.issue=2&rft.spage=208&rft.pages=208-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac9cd4&rft_dat=%3Cproquest_iop_j%3E2758657144%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-d5a40cff167485b83ce2a78b91a53bbd4eadcf40497c565521dec09a68302ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758657144&rft_id=info:pmid/&rfr_iscdi=true