Loading…
Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas
Cold atmospheric plasmas (CAPs) are increasingly used for applications requiring the processing of heat- and pressure-sensitive (bio)materials. A key challenge in model-based control of CAPs arises from the high-computational requirements of theoretical plasma models as well as lack of mechanistic u...
Saved in:
Published in: | IEEE transactions on control systems technology 2023-01, Vol.31 (1), p.55-69 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703 |
container_end_page | 69 |
container_issue | 1 |
container_start_page | 55 |
container_title | IEEE transactions on control systems technology |
container_volume | 31 |
creator | Rodrigues, Diogo Chan, Kimberly J. Mesbah, Ali |
description | Cold atmospheric plasmas (CAPs) are increasingly used for applications requiring the processing of heat- and pressure-sensitive (bio)materials. A key challenge in model-based control of CAPs arises from the high-computational requirements of theoretical plasma models as well as lack of mechanistic understanding of plasma-surface interactions. Thus, control strategies that rely on simple, physics-based models that can be adapted to mitigate plant-model mismatch will be particularly advantageous for CAP applications. This article presents an optimal control approach for controlling the nonlinear and cumulative effects of CAPs delivered to a target surface using a simple system model. Through parsimonious input parameterization, the solution to the optimal control problem (OCP) is given by an arc sequence that does not include any singular arcs. A data-driven adaptive algorithm based on modifier adaptation is proposed to deal with the structural plant-model mismatch by estimating the mismatch in the cost and constraints of the OCP. The adaptive approach is shown to converge to a Karush-Kuhn-Tucker (KKT) point of the OCP for the true system. Moreover, a control strategy based on feedback linearization and derivative estimation is proposed for online tracking of path constraints in the presence of disturbances and model uncertainty. The proposed approach is demonstrated by simulations and real-time control experiments on a kilohertz-excited atmospheric pressure plasma jet in helium, in which the plasma treatment time is minimized while delivering a desired amount of nonlinear thermal effects to the target surface. |
doi_str_mv | 10.1109/TCST.2022.3172597 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758716024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780636</ieee_id><sourcerecordid>2758716024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKc_QLwJeN2ZpPlovSudXzCZ4HYdsjRhHV1Tk0zYvzdlw6tzLs7zhjwA3GM0wxiVT6v6ezUjiJBZjgVhpbgAE8xYkaGCs8vUEc8zznJ-DW5C2CGEKSNiArZzFVU29-2v6WHVqCGmBpcp9qqDteujdx1c943x8NM1Zuza-KjaPh6fYZWgYeharWLrehhdQroGVnHvwrA1vtXwq1Nhr8ItuLKqC-bunFOwfn1Z1e_ZYvn2UVeLTFNEYpZvuMoZF6JQuuHYNoIybAtOSkQFtVqXVGxSCt4wWhpLmSWKUWy1spwKlE_B4-nu4N3PwYQod-7g-_SkJIIVAnNEaFrh00p7F4I3Vg4-_dgfJUZyFCpHoXIUKs9CE_NwYlpjzP--FEVSy_M_ndhxwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758716024</pqid></control><display><type>article</type><title>Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rodrigues, Diogo ; Chan, Kimberly J. ; Mesbah, Ali</creator><creatorcontrib>Rodrigues, Diogo ; Chan, Kimberly J. ; Mesbah, Ali</creatorcontrib><description>Cold atmospheric plasmas (CAPs) are increasingly used for applications requiring the processing of heat- and pressure-sensitive (bio)materials. A key challenge in model-based control of CAPs arises from the high-computational requirements of theoretical plasma models as well as lack of mechanistic understanding of plasma-surface interactions. Thus, control strategies that rely on simple, physics-based models that can be adapted to mitigate plant-model mismatch will be particularly advantageous for CAP applications. This article presents an optimal control approach for controlling the nonlinear and cumulative effects of CAPs delivered to a target surface using a simple system model. Through parsimonious input parameterization, the solution to the optimal control problem (OCP) is given by an arc sequence that does not include any singular arcs. A data-driven adaptive algorithm based on modifier adaptation is proposed to deal with the structural plant-model mismatch by estimating the mismatch in the cost and constraints of the OCP. The adaptive approach is shown to converge to a Karush-Kuhn-Tucker (KKT) point of the OCP for the true system. Moreover, a control strategy based on feedback linearization and derivative estimation is proposed for online tracking of path constraints in the presence of disturbances and model uncertainty. The proposed approach is demonstrated by simulations and real-time control experiments on a kilohertz-excited atmospheric pressure plasma jet in helium, in which the plasma treatment time is minimized while delivering a desired amount of nonlinear thermal effects to the target surface.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2022.3172597</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Adaptive control ; Adaptive systems ; Atmospheric modeling ; Atmospheric models ; Cold atmospheric plasmas (CAPs) ; derivative estimation ; Estimation ; Feedback linearization ; modifier adaptation ; Nonlinear control ; Optimal control ; Parameterization ; Plasma ; Plasma jets ; Plasma temperature ; Plasmas ; Plasmas (physics) ; Surface treatment ; Temperature effects ; Uncertainty</subject><ispartof>IEEE transactions on control systems technology, 2023-01, Vol.31 (1), p.55-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703</citedby><cites>FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703</cites><orcidid>0000-0001-7823-2993 ; 0000-0002-9460-1653 ; 0000-0002-1700-0600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9780636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Rodrigues, Diogo</creatorcontrib><creatorcontrib>Chan, Kimberly J.</creatorcontrib><creatorcontrib>Mesbah, Ali</creatorcontrib><title>Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Cold atmospheric plasmas (CAPs) are increasingly used for applications requiring the processing of heat- and pressure-sensitive (bio)materials. A key challenge in model-based control of CAPs arises from the high-computational requirements of theoretical plasma models as well as lack of mechanistic understanding of plasma-surface interactions. Thus, control strategies that rely on simple, physics-based models that can be adapted to mitigate plant-model mismatch will be particularly advantageous for CAP applications. This article presents an optimal control approach for controlling the nonlinear and cumulative effects of CAPs delivered to a target surface using a simple system model. Through parsimonious input parameterization, the solution to the optimal control problem (OCP) is given by an arc sequence that does not include any singular arcs. A data-driven adaptive algorithm based on modifier adaptation is proposed to deal with the structural plant-model mismatch by estimating the mismatch in the cost and constraints of the OCP. The adaptive approach is shown to converge to a Karush-Kuhn-Tucker (KKT) point of the OCP for the true system. Moreover, a control strategy based on feedback linearization and derivative estimation is proposed for online tracking of path constraints in the presence of disturbances and model uncertainty. The proposed approach is demonstrated by simulations and real-time control experiments on a kilohertz-excited atmospheric pressure plasma jet in helium, in which the plasma treatment time is minimized while delivering a desired amount of nonlinear thermal effects to the target surface.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Cold atmospheric plasmas (CAPs)</subject><subject>derivative estimation</subject><subject>Estimation</subject><subject>Feedback linearization</subject><subject>modifier adaptation</subject><subject>Nonlinear control</subject><subject>Optimal control</subject><subject>Parameterization</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>Plasmas (physics)</subject><subject>Surface treatment</subject><subject>Temperature effects</subject><subject>Uncertainty</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKc_QLwJeN2ZpPlovSudXzCZ4HYdsjRhHV1Tk0zYvzdlw6tzLs7zhjwA3GM0wxiVT6v6ezUjiJBZjgVhpbgAE8xYkaGCs8vUEc8zznJ-DW5C2CGEKSNiArZzFVU29-2v6WHVqCGmBpcp9qqDteujdx1c943x8NM1Zuza-KjaPh6fYZWgYeharWLrehhdQroGVnHvwrA1vtXwq1Nhr8ItuLKqC-bunFOwfn1Z1e_ZYvn2UVeLTFNEYpZvuMoZF6JQuuHYNoIybAtOSkQFtVqXVGxSCt4wWhpLmSWKUWy1spwKlE_B4-nu4N3PwYQod-7g-_SkJIIVAnNEaFrh00p7F4I3Vg4-_dgfJUZyFCpHoXIUKs9CE_NwYlpjzP--FEVSy_M_ndhxwg</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Rodrigues, Diogo</creator><creator>Chan, Kimberly J.</creator><creator>Mesbah, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7823-2993</orcidid><orcidid>https://orcid.org/0000-0002-9460-1653</orcidid><orcidid>https://orcid.org/0000-0002-1700-0600</orcidid></search><sort><creationdate>202301</creationdate><title>Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas</title><author>Rodrigues, Diogo ; Chan, Kimberly J. ; Mesbah, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Cold atmospheric plasmas (CAPs)</topic><topic>derivative estimation</topic><topic>Estimation</topic><topic>Feedback linearization</topic><topic>modifier adaptation</topic><topic>Nonlinear control</topic><topic>Optimal control</topic><topic>Parameterization</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>Plasmas (physics)</topic><topic>Surface treatment</topic><topic>Temperature effects</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Diogo</creatorcontrib><creatorcontrib>Chan, Kimberly J.</creatorcontrib><creatorcontrib>Mesbah, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Diogo</au><au>Chan, Kimberly J.</au><au>Mesbah, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-01</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>55</spage><epage>69</epage><pages>55-69</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Cold atmospheric plasmas (CAPs) are increasingly used for applications requiring the processing of heat- and pressure-sensitive (bio)materials. A key challenge in model-based control of CAPs arises from the high-computational requirements of theoretical plasma models as well as lack of mechanistic understanding of plasma-surface interactions. Thus, control strategies that rely on simple, physics-based models that can be adapted to mitigate plant-model mismatch will be particularly advantageous for CAP applications. This article presents an optimal control approach for controlling the nonlinear and cumulative effects of CAPs delivered to a target surface using a simple system model. Through parsimonious input parameterization, the solution to the optimal control problem (OCP) is given by an arc sequence that does not include any singular arcs. A data-driven adaptive algorithm based on modifier adaptation is proposed to deal with the structural plant-model mismatch by estimating the mismatch in the cost and constraints of the OCP. The adaptive approach is shown to converge to a Karush-Kuhn-Tucker (KKT) point of the OCP for the true system. Moreover, a control strategy based on feedback linearization and derivative estimation is proposed for online tracking of path constraints in the presence of disturbances and model uncertainty. The proposed approach is demonstrated by simulations and real-time control experiments on a kilohertz-excited atmospheric pressure plasma jet in helium, in which the plasma treatment time is minimized while delivering a desired amount of nonlinear thermal effects to the target surface.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2022.3172597</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7823-2993</orcidid><orcidid>https://orcid.org/0000-0002-9460-1653</orcidid><orcidid>https://orcid.org/0000-0002-1700-0600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2023-01, Vol.31 (1), p.55-69 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_2758716024 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Adaptive algorithms Adaptive control Adaptive systems Atmospheric modeling Atmospheric models Cold atmospheric plasmas (CAPs) derivative estimation Estimation Feedback linearization modifier adaptation Nonlinear control Optimal control Parameterization Plasma Plasma jets Plasma temperature Plasmas Plasmas (physics) Surface treatment Temperature effects Uncertainty |
title | Data-Driven Adaptive Optimal Control Under Model Uncertainty: An Application to Cold Atmospheric Plasmas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Adaptive%20Optimal%20Control%20Under%20Model%20Uncertainty:%20An%20Application%20to%20Cold%20Atmospheric%20Plasmas&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Rodrigues,%20Diogo&rft.date=2023-01&rft.volume=31&rft.issue=1&rft.spage=55&rft.epage=69&rft.pages=55-69&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2022.3172597&rft_dat=%3Cproquest_cross%3E2758716024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3b6a356778acd61fd7451f86290474fcc947b4fc76d549ef45f2a541fcaf64703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758716024&rft_id=info:pmid/&rft_ieee_id=9780636&rfr_iscdi=true |