Loading…

Spectrum Estimation of Input Current Ripple on a Wide Class of Multilevel Grid-Tied Converters

Multilevel (ML) converters are frequently used to implement grid-tied ac–dc conversion systems. Their design may benefit from multiobjective optimization techniques, which typically involves time-consuming circuit simulations in order to obtain input current estimations suitable for input inductor a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2023-03, Vol.38 (3), p.2855-2860
Main Author: Biadene, Davide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multilevel (ML) converters are frequently used to implement grid-tied ac–dc conversion systems. Their design may benefit from multiobjective optimization techniques, which typically involves time-consuming circuit simulations in order to obtain input current estimations suitable for input inductor and electromagnetic interference filter design. Herein, a closed-form expression of the input current ripple is derived to ease harmonic content estimations. The proposed approach separates the fundamental grid-current component from its ripple and models the latter like an amplitude modulation, where the modulating signal is its envelope and the carrier is the triangular current waveform. First, a general waveform analysis of ML converters is performed to derive the voltage across the grid-side inductor, then the associated current ripple is modeled. Experimental results on an ML converter prototype are reported to validate the analytical results.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2022.3222570