Loading…
COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images
A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomograp...
Saved in:
Published in: | International journal of advanced computer science & applications 2022-01, Vol.13 (11) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 13 |
creator | S, Briskline Kiruba D, Murugan A, Petchiammal |
description | A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomography (CT) scans, produces clear, high-quality chest images and helps quickly diagnoses lung abnormalities. The recent advancements in Artificial intelligence enable accurate and fast detection of COVID-19 symptoms on chest CT images. This paper presents COVIDnet, an improved and efficient deep learning Model for COVID-19 diagnosis on chest CT images. We developed a chest CT dataset from 220 CT studies from Tamil Nadu, India, to evaluate the proposed model. The final dataset contains 5191 CT images (3820 COVID-infected and 1371 normal CT images). The proposed COVIDnet model aims to produce accurate diagnostics for classifying these two classes. Our experimental result shows that COVIDnet achieved a superior accuracy of 98.98% when compared with three contemporary deep learning models. |
doi_str_mv | 10.14569/IJACSA.2022.0131196 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758767677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758767677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-c673d1c0a8ea721438a0e7ca78ec0ed8aa9ff849e0e4f2ef7adc8b7529a25f9f3</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EElXpP2CwxJzijzi22aK0QFBRBwpis4xzLqlap9jpwL8ntL0b7h0e3Z0ehG4pmdJcFPq-fimrt3LKCGNTQjmlurhAI0ZFkQkhyeUxq4wS-XmNJiltyFBcs0LxEVpVy496FqB_wGXAc-9b10Lo8QxgjxdgY2jDGr92DWyx7yI-4hnVeNbadehSm3AXcPUNqcfVCtc7u4Z0g6683SaYnOcYvT_OV9Vztlg-1VW5yBwjeZ-5QvKGOmIVWMlozpUlIJ2VChyBRlmrvVe5BgK5Z-ClbZz6koJpy4TXno_R3WnvPnY_h-EFs-kOMQwnDZNCyWJoOVD5iXKxSymCN_vY7mz8NZSYo0JzUmj-FZqzQv4Hnc5iPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758767677</pqid></control><display><type>article</type><title>COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images</title><source>Publicly Available Content Database</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Coronavirus Research Database</source><creator>S, Briskline Kiruba ; D, Murugan ; A, Petchiammal</creator><creatorcontrib>S, Briskline Kiruba ; D, Murugan ; A, Petchiammal</creatorcontrib><description>A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomography (CT) scans, produces clear, high-quality chest images and helps quickly diagnoses lung abnormalities. The recent advancements in Artificial intelligence enable accurate and fast detection of COVID-19 symptoms on chest CT images. This paper presents COVIDnet, an improved and efficient deep learning Model for COVID-19 diagnosis on chest CT images. We developed a chest CT dataset from 220 CT studies from Tamil Nadu, India, to evaluate the proposed model. The final dataset contains 5191 CT images (3820 COVID-infected and 1371 normal CT images). The proposed COVIDnet model aims to produce accurate diagnostics for classifying these two classes. Our experimental result shows that COVIDnet achieved a superior accuracy of 98.98% when compared with three contemporary deep learning models.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2022.0131196</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Abnormalities ; Artificial intelligence ; Chest ; Computed tomography ; Coronaviruses ; COVID-19 ; Datasets ; Deep learning ; Diagnosis ; Disease control ; Image classification ; Image quality ; Machine learning ; Medical imaging ; Respiratory system ; Signs and symptoms ; Viral diseases</subject><ispartof>International journal of advanced computer science & applications, 2022-01, Vol.13 (11)</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2758767677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590</link.rule.ids></links><search><creatorcontrib>S, Briskline Kiruba</creatorcontrib><creatorcontrib>D, Murugan</creatorcontrib><creatorcontrib>A, Petchiammal</creatorcontrib><title>COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images</title><title>International journal of advanced computer science & applications</title><description>A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomography (CT) scans, produces clear, high-quality chest images and helps quickly diagnoses lung abnormalities. The recent advancements in Artificial intelligence enable accurate and fast detection of COVID-19 symptoms on chest CT images. This paper presents COVIDnet, an improved and efficient deep learning Model for COVID-19 diagnosis on chest CT images. We developed a chest CT dataset from 220 CT studies from Tamil Nadu, India, to evaluate the proposed model. The final dataset contains 5191 CT images (3820 COVID-infected and 1371 normal CT images). The proposed COVIDnet model aims to produce accurate diagnostics for classifying these two classes. Our experimental result shows that COVIDnet achieved a superior accuracy of 98.98% when compared with three contemporary deep learning models.</description><subject>Abnormalities</subject><subject>Artificial intelligence</subject><subject>Chest</subject><subject>Computed tomography</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Image classification</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Respiratory system</subject><subject>Signs and symptoms</subject><subject>Viral diseases</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNotkD1PwzAQhi0EElXpP2CwxJzijzi22aK0QFBRBwpis4xzLqlap9jpwL8ntL0b7h0e3Z0ehG4pmdJcFPq-fimrt3LKCGNTQjmlurhAI0ZFkQkhyeUxq4wS-XmNJiltyFBcs0LxEVpVy496FqB_wGXAc-9b10Lo8QxgjxdgY2jDGr92DWyx7yI-4hnVeNbadehSm3AXcPUNqcfVCtc7u4Z0g6683SaYnOcYvT_OV9Vztlg-1VW5yBwjeZ-5QvKGOmIVWMlozpUlIJ2VChyBRlmrvVe5BgK5Z-ClbZz6koJpy4TXno_R3WnvPnY_h-EFs-kOMQwnDZNCyWJoOVD5iXKxSymCN_vY7mz8NZSYo0JzUmj-FZqzQv4Hnc5iPA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>S, Briskline Kiruba</creator><creator>D, Murugan</creator><creator>A, Petchiammal</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images</title><author>S, Briskline Kiruba ; D, Murugan ; A, Petchiammal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-c673d1c0a8ea721438a0e7ca78ec0ed8aa9ff849e0e4f2ef7adc8b7529a25f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Artificial intelligence</topic><topic>Chest</topic><topic>Computed tomography</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Image classification</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Respiratory system</topic><topic>Signs and symptoms</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>S, Briskline Kiruba</creatorcontrib><creatorcontrib>D, Murugan</creatorcontrib><creatorcontrib>A, Petchiammal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S, Briskline Kiruba</au><au>D, Murugan</au><au>A, Petchiammal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>13</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomography (CT) scans, produces clear, high-quality chest images and helps quickly diagnoses lung abnormalities. The recent advancements in Artificial intelligence enable accurate and fast detection of COVID-19 symptoms on chest CT images. This paper presents COVIDnet, an improved and efficient deep learning Model for COVID-19 diagnosis on chest CT images. We developed a chest CT dataset from 220 CT studies from Tamil Nadu, India, to evaluate the proposed model. The final dataset contains 5191 CT images (3820 COVID-infected and 1371 normal CT images). The proposed COVIDnet model aims to produce accurate diagnostics for classifying these two classes. Our experimental result shows that COVIDnet achieved a superior accuracy of 98.98% when compared with three contemporary deep learning models.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2022.0131196</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2022-01, Vol.13 (11) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2758767677 |
source | Publicly Available Content Database; Free E-Journal (出版社公開部分のみ); Coronavirus Research Database |
subjects | Abnormalities Artificial intelligence Chest Computed tomography Coronaviruses COVID-19 Datasets Deep learning Diagnosis Disease control Image classification Image quality Machine learning Medical imaging Respiratory system Signs and symptoms Viral diseases |
title | COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVIDnet:%20An%20Efficient%20Deep%20Learning%20Model%20for%20COVID-19%20Diagnosis%20on%20Chest%20CT%20Images&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=S,%20Briskline%20Kiruba&rft.date=2022-01-01&rft.volume=13&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2022.0131196&rft_dat=%3Cproquest_cross%3E2758767677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-c673d1c0a8ea721438a0e7ca78ec0ed8aa9ff849e0e4f2ef7adc8b7529a25f9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758767677&rft_id=info:pmid/&rfr_iscdi=true |