Loading…

Predicting IRI Using Machine Learning Techniques

The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evalua...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pavement research & technology 2023-01, Vol.16 (1), p.128-137
Main Authors: Sharma, Ankit, Sachdeva, S. N., Aggarwal, Praveen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343
cites cdi_FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343
container_end_page 137
container_issue 1
container_start_page 128
container_title International journal of pavement research & technology
container_volume 16
creator Sharma, Ankit
Sachdeva, S. N.
Aggarwal, Praveen
description The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R 2 (0.86572) which was maximum.
doi_str_mv 10.1007/s42947-021-00119-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759972786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759972786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343</originalsourceid><addsrcrecordid>eNp9UF1LwzAUDaLgmPsDPhV8jt6bpk3zKMOPQoci23NI0nSraDuTjuG_N10F33y6h8v5uPcQco1wiwDiLnAmuaDAkAIgSno8IzOUUlDkAOcnnNO8QH5JFiG0BjhnWEiezwi8ele3dmi7bVK-lckmjGil7a7tXFI57btxsXZ217VfBxeuyEWjP4Jb_M452Tw-rJfPtHp5Kpf3FbVpkQ3U6Qal4bmQxjgEk7pc2kzaIhMN49xAbZFJAdAUYOJ9WugadG1ry5zBlKdzcjP57n0_5g7qvT_4LkYqJrL4HBNFHllsYlnfh-Bdo_a-_dT-WyGosRw1laNiOepUjjpGUTqJQiR3W-f_rP9R_QA20mak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759972786</pqid></control><display><type>article</type><title>Predicting IRI Using Machine Learning Techniques</title><source>Springer Link</source><creator>Sharma, Ankit ; Sachdeva, S. N. ; Aggarwal, Praveen</creator><creatorcontrib>Sharma, Ankit ; Sachdeva, S. N. ; Aggarwal, Praveen</creatorcontrib><description>The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R 2 (0.86572) which was maximum.</description><identifier>ISSN: 1996-6814</identifier><identifier>EISSN: 1997-1400</identifier><identifier>DOI: 10.1007/s42947-021-00119-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Building Construction and Design ; Civil Engineering ; Deep learning ; Engineering ; Generalized linear models ; Machine learning ; Mean square errors ; Mean square values ; Original Research Paper ; Pavements ; Performance evaluation ; Regression models ; Rehabilitation ; Road maintenance ; Roads &amp; highways ; Root-mean-square errors ; Statistical analysis ; Statistical models ; Structural Materials ; Transportation networks</subject><ispartof>International journal of pavement research &amp; technology, 2023-01, Vol.16 (1), p.128-137</ispartof><rights>The Author(s), under exclusive licence to Chinese Society of Pavement Engineering 2021</rights><rights>The Author(s), under exclusive licence to Chinese Society of Pavement Engineering 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343</citedby><cites>FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343</cites><orcidid>0000-0003-3730-2961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sharma, Ankit</creatorcontrib><creatorcontrib>Sachdeva, S. N.</creatorcontrib><creatorcontrib>Aggarwal, Praveen</creatorcontrib><title>Predicting IRI Using Machine Learning Techniques</title><title>International journal of pavement research &amp; technology</title><addtitle>Int. J. Pavement Res. Technol</addtitle><description>The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R 2 (0.86572) which was maximum.</description><subject>Building Construction and Design</subject><subject>Civil Engineering</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Generalized linear models</subject><subject>Machine learning</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Original Research Paper</subject><subject>Pavements</subject><subject>Performance evaluation</subject><subject>Regression models</subject><subject>Rehabilitation</subject><subject>Road maintenance</subject><subject>Roads &amp; highways</subject><subject>Root-mean-square errors</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Structural Materials</subject><subject>Transportation networks</subject><issn>1996-6814</issn><issn>1997-1400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAUDaLgmPsDPhV8jt6bpk3zKMOPQoci23NI0nSraDuTjuG_N10F33y6h8v5uPcQco1wiwDiLnAmuaDAkAIgSno8IzOUUlDkAOcnnNO8QH5JFiG0BjhnWEiezwi8ele3dmi7bVK-lckmjGil7a7tXFI57btxsXZ217VfBxeuyEWjP4Jb_M452Tw-rJfPtHp5Kpf3FbVpkQ3U6Qal4bmQxjgEk7pc2kzaIhMN49xAbZFJAdAUYOJ9WugadG1ry5zBlKdzcjP57n0_5g7qvT_4LkYqJrL4HBNFHllsYlnfh-Bdo_a-_dT-WyGosRw1laNiOepUjjpGUTqJQiR3W-f_rP9R_QA20mak</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sharma, Ankit</creator><creator>Sachdeva, S. N.</creator><creator>Aggarwal, Praveen</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3730-2961</orcidid></search><sort><creationdate>20230101</creationdate><title>Predicting IRI Using Machine Learning Techniques</title><author>Sharma, Ankit ; Sachdeva, S. N. ; Aggarwal, Praveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Building Construction and Design</topic><topic>Civil Engineering</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Generalized linear models</topic><topic>Machine learning</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Original Research Paper</topic><topic>Pavements</topic><topic>Performance evaluation</topic><topic>Regression models</topic><topic>Rehabilitation</topic><topic>Road maintenance</topic><topic>Roads &amp; highways</topic><topic>Root-mean-square errors</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Structural Materials</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ankit</creatorcontrib><creatorcontrib>Sachdeva, S. N.</creatorcontrib><creatorcontrib>Aggarwal, Praveen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of pavement research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ankit</au><au>Sachdeva, S. N.</au><au>Aggarwal, Praveen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting IRI Using Machine Learning Techniques</atitle><jtitle>International journal of pavement research &amp; technology</jtitle><stitle>Int. J. Pavement Res. Technol</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>128</spage><epage>137</epage><pages>128-137</pages><issn>1996-6814</issn><eissn>1997-1400</eissn><abstract>The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R 2 (0.86572) which was maximum.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42947-021-00119-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3730-2961</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1996-6814
ispartof International journal of pavement research & technology, 2023-01, Vol.16 (1), p.128-137
issn 1996-6814
1997-1400
language eng
recordid cdi_proquest_journals_2759972786
source Springer Link
subjects Building Construction and Design
Civil Engineering
Deep learning
Engineering
Generalized linear models
Machine learning
Mean square errors
Mean square values
Original Research Paper
Pavements
Performance evaluation
Regression models
Rehabilitation
Road maintenance
Roads & highways
Root-mean-square errors
Statistical analysis
Statistical models
Structural Materials
Transportation networks
title Predicting IRI Using Machine Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20IRI%20Using%20Machine%20Learning%20Techniques&rft.jtitle=International%20journal%20of%20pavement%20research%20&%20technology&rft.au=Sharma,%20Ankit&rft.date=2023-01-01&rft.volume=16&rft.issue=1&rft.spage=128&rft.epage=137&rft.pages=128-137&rft.issn=1996-6814&rft.eissn=1997-1400&rft_id=info:doi/10.1007/s42947-021-00119-w&rft_dat=%3Cproquest_cross%3E2759972786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-eaf19b4679bbe10b3e69c59c857f244b0dc129700f80b199a7ad0adcdc2eb1343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2759972786&rft_id=info:pmid/&rfr_iscdi=true