Loading…
Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems
The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cheng-Zhen, Wang Kononchuk, Rodion Kuhl, Ulrich Kottos, Tsampikos |
description | The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and are described using Random Matrix Theory (RMT). Here, using a nonlinear complex network of coaxial cables (graphs), we exploit both experimentally and theoretically the interplay of nonlinear interactions and wave chaos. We develop general theories that describe our asymmetric transport (AT) measurements, its universal bound, and its statistical description via RMT. These are controlled by the structural asymmetry factor (SAF) characterizing the structure of the graph. The SAF dictates the asymmetric intensity range (AIR) where AT is strongly present. Contrary to the conventional wisdom that expects losses to deteriorate the transmittance, we identify (necessary) conditions for which the AIR (AT) increases without deteriorating the AT (AIR). Our research initiates the quest for universalities in wave transport of nonlinear chaotic systems and has potential applications for the design of magnetic-free isolators. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760029271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760029271</sourcerecordid><originalsourceid>FETCH-proquest_journals_27600292713</originalsourceid><addsrcrecordid>eNqNjsEKgkAUAJcgSMp_eNBZ0N3UOoYUnrpkdJQlnrSiu_beKvj3eegDOs1h5jArEUilkuh4kHIjQuY2jmOZ5TJNVSDKhzUTEuvOeIMMroEzz32PnswLKtKWB0cejIWbs52xqAmeekIo3tr5pbnP7LHnnVg3umMMf9yK_fVSFWU0kPuMyL5u3Uh2UbXMs-XgJPNE_Vd9AYiYPG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760029271</pqid></control><display><type>article</type><title>Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems</title><source>Publicly Available Content Database</source><creator>Cheng-Zhen, Wang ; Kononchuk, Rodion ; Kuhl, Ulrich ; Kottos, Tsampikos</creator><creatorcontrib>Cheng-Zhen, Wang ; Kononchuk, Rodion ; Kuhl, Ulrich ; Kottos, Tsampikos</creatorcontrib><description>The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and are described using Random Matrix Theory (RMT). Here, using a nonlinear complex network of coaxial cables (graphs), we exploit both experimentally and theoretically the interplay of nonlinear interactions and wave chaos. We develop general theories that describe our asymmetric transport (AT) measurements, its universal bound, and its statistical description via RMT. These are controlled by the structural asymmetry factor (SAF) characterizing the structure of the graph. The SAF dictates the asymmetric intensity range (AIR) where AT is strongly present. Contrary to the conventional wisdom that expects losses to deteriorate the transmittance, we identify (necessary) conditions for which the AIR (AT) increases without deteriorating the AT (AIR). Our research initiates the quest for universalities in wave transport of nonlinear chaotic systems and has potential applications for the design of magnetic-free isolators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymmetry ; Chaos theory ; Coaxial cables ; Complexity ; Matrix theory ; Nonlinear systems ; Transport properties</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2760029271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cheng-Zhen, Wang</creatorcontrib><creatorcontrib>Kononchuk, Rodion</creatorcontrib><creatorcontrib>Kuhl, Ulrich</creatorcontrib><creatorcontrib>Kottos, Tsampikos</creatorcontrib><title>Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems</title><title>arXiv.org</title><description>The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and are described using Random Matrix Theory (RMT). Here, using a nonlinear complex network of coaxial cables (graphs), we exploit both experimentally and theoretically the interplay of nonlinear interactions and wave chaos. We develop general theories that describe our asymmetric transport (AT) measurements, its universal bound, and its statistical description via RMT. These are controlled by the structural asymmetry factor (SAF) characterizing the structure of the graph. The SAF dictates the asymmetric intensity range (AIR) where AT is strongly present. Contrary to the conventional wisdom that expects losses to deteriorate the transmittance, we identify (necessary) conditions for which the AIR (AT) increases without deteriorating the AT (AIR). Our research initiates the quest for universalities in wave transport of nonlinear chaotic systems and has potential applications for the design of magnetic-free isolators.</description><subject>Asymmetry</subject><subject>Chaos theory</subject><subject>Coaxial cables</subject><subject>Complexity</subject><subject>Matrix theory</subject><subject>Nonlinear systems</subject><subject>Transport properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjsEKgkAUAJcgSMp_eNBZ0N3UOoYUnrpkdJQlnrSiu_beKvj3eegDOs1h5jArEUilkuh4kHIjQuY2jmOZ5TJNVSDKhzUTEuvOeIMMroEzz32PnswLKtKWB0cejIWbs52xqAmeekIo3tr5pbnP7LHnnVg3umMMf9yK_fVSFWU0kPuMyL5u3Uh2UbXMs-XgJPNE_Vd9AYiYPG8</recordid><startdate>20221225</startdate><enddate>20221225</enddate><creator>Cheng-Zhen, Wang</creator><creator>Kononchuk, Rodion</creator><creator>Kuhl, Ulrich</creator><creator>Kottos, Tsampikos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221225</creationdate><title>Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems</title><author>Cheng-Zhen, Wang ; Kononchuk, Rodion ; Kuhl, Ulrich ; Kottos, Tsampikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27600292713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetry</topic><topic>Chaos theory</topic><topic>Coaxial cables</topic><topic>Complexity</topic><topic>Matrix theory</topic><topic>Nonlinear systems</topic><topic>Transport properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng-Zhen, Wang</creatorcontrib><creatorcontrib>Kononchuk, Rodion</creatorcontrib><creatorcontrib>Kuhl, Ulrich</creatorcontrib><creatorcontrib>Kottos, Tsampikos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng-Zhen, Wang</au><au>Kononchuk, Rodion</au><au>Kuhl, Ulrich</au><au>Kottos, Tsampikos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-12-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The intrinsic dynamical complexity of classically chaotic systems enforces a universal description of the transport properties of their wave-mechanical analogues. These universal rules have been established within the framework of linear wave transport, where nonlinear interactions are omitted, and are described using Random Matrix Theory (RMT). Here, using a nonlinear complex network of coaxial cables (graphs), we exploit both experimentally and theoretically the interplay of nonlinear interactions and wave chaos. We develop general theories that describe our asymmetric transport (AT) measurements, its universal bound, and its statistical description via RMT. These are controlled by the structural asymmetry factor (SAF) characterizing the structure of the graph. The SAF dictates the asymmetric intensity range (AIR) where AT is strongly present. Contrary to the conventional wisdom that expects losses to deteriorate the transmittance, we identify (necessary) conditions for which the AIR (AT) increases without deteriorating the AT (AIR). Our research initiates the quest for universalities in wave transport of nonlinear chaotic systems and has potential applications for the design of magnetic-free isolators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2760029271 |
source | Publicly Available Content Database |
subjects | Asymmetry Chaos theory Coaxial cables Complexity Matrix theory Nonlinear systems Transport properties |
title | Universalities of Asymmetric Transport in Nonlinear Wave Chaotic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universalities%20of%20Asymmetric%20Transport%20in%20Nonlinear%20Wave%20Chaotic%20Systems&rft.jtitle=arXiv.org&rft.au=Cheng-Zhen,%20Wang&rft.date=2022-12-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2760029271%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27600292713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760029271&rft_id=info:pmid/&rfr_iscdi=true |